1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
mod background; mod vehicle; use agents::{ app::{App, State}, simulation::{Simulation, Worker}, }; use vehicle::{Bounds, Vehicle}; use anyhow::Result; use draw2d::{ camera::{default_camera_controls, OrthoCamera}, graphics::{ layer::{Batch, LayerHandle}, Graphics, }, }; use std::time::Duration; use triple_buffer::Input; struct VehicleWorld { vehicles: Vec<Vehicle>, } impl VehicleWorld { fn new() -> Self { Self { vehicles: vec![] } } fn flush(&self, sync: &mut Input<Vec<Vehicle>>) { sync.input_buffer().clear(); sync.input_buffer().extend_from_slice(&self.vehicles); sync.publish(); } } impl Simulation for VehicleWorld { type SyncState = Vec<Vehicle>; fn setup(&mut self, sync: &mut Input<Self::SyncState>) { let max = 10000; for i in 0..max { let norm = i as f32 / max as f32; let angle = norm * std::f32::consts::TAU; self.vehicles.push(Vehicle::new( [angle.cos() * 10.0, angle.sin() * 10.0], [angle.cos() * 2.0, angle.sin() * 2.0], )); } self.flush(sync); } fn tick(&mut self, sync: &mut Input<Self::SyncState>, _: Duration) { let bounds = Bounds { left: -20.0, right: 20.0, bottom: -20.0, top: 20.0, margin: 0.5, }; let dt = Self::TICK_THROTTLE.as_secs_f32(); for vehicle in &mut self.vehicles { vehicle.enforce_bounds(&bounds); vehicle.integrate(dt); } self.flush(sync); } } struct Demo { background_layer: LayerHandle, foreground_layer: LayerHandle, camera: OrthoCamera, sim: Worker<VehicleWorld>, } impl Demo { fn new(window: &mut glfw::Window, graphics: &mut Graphics) -> Result<Self> { let (w, h) = window.get_size(); Ok(Self { background_layer: graphics.add_layer_to_bottom(), foreground_layer: graphics.add_layer_to_top(), camera: OrthoCamera::with_viewport(20.0, w as f32 / h as f32), sim: Worker::new(VehicleWorld::new)?, }) } fn update_projection(&self, graphics: &mut Graphics) { let matrix = self.camera.as_matrix(); graphics .get_layer_mut(&self.background_layer) .set_projection(matrix); graphics .get_layer_mut(&self.foreground_layer) .set_projection(matrix); } } impl State for Demo { fn init( &mut self, _window: &mut glfw::Window, graphics: &mut Graphics, ) -> Result<()> { self.update_projection(graphics); let background = self.build_background(graphics)?; graphics .get_layer_mut(&self.background_layer) .push_batch(background); Ok(()) } fn update( &mut self, _window: &mut glfw::Window, graphics: &mut Graphics, _update_duration: Duration, ) -> Result<()> { let vehicles = self.sim.state(); let mut vehicle_batch = Batch::empty(); vehicle_batch.vertices.reserve(vehicles.len() * 3); for vehicle in self.sim.state() { vehicle_batch.vertices.extend_from_slice(&vehicle.draw()); } let layer = graphics.get_layer_mut(&self.foreground_layer); layer.clear(); layer.push_batch(vehicle_batch); Ok(()) } fn handle_event( &mut self, window_event: &glfw::WindowEvent, _window: &mut glfw::Window, graphics: &mut Graphics, ) -> Result<()> { if default_camera_controls(&mut self.camera, &window_event) { self.update_projection(graphics); } Ok(()) } } fn main() -> Result<()> { App::new(Demo::new)?.main_loop() }