1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
//! Matrix iterators.

use std::iter::FusedIterator;
use std::marker::PhantomData;
use std::mem;

use crate::base::dimension::{Dim, U1};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{Matrix, MatrixSlice, MatrixSliceMut, Scalar};

macro_rules! iterator {
    (struct $Name:ident for $Storage:ident.$ptr: ident -> $Ptr:ty, $Ref:ty, $SRef: ty) => {
        /// An iterator through a dense matrix with arbitrary strides matrix.
        pub struct $Name<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> {
            ptr: $Ptr,
            inner_ptr: $Ptr,
            inner_end: $Ptr,
            size: usize, // We can't use an end pointer here because a stride might be zero.
            strides: (S::RStride, S::CStride),
            _phantoms: PhantomData<($Ref, R, C, S)>,
        }

        // TODO: we need to specialize for the case where the matrix storage is owned (in which
        // case the iterator is trivial because it does not have any stride).
        impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> $Name<'a, N, R, C, S> {
            /// Creates a new iterator for the given matrix storage.
            pub fn new(storage: $SRef) -> $Name<'a, N, R, C, S> {
                let shape = storage.shape();
                let strides = storage.strides();
                let inner_offset = shape.0.value() * strides.0.value();
                let size = shape.0.value() * shape.1.value();
                let ptr = storage.$ptr();

                // If we have a size of 0, 'ptr' must be
                // dangling. Howver, 'inner_offset' might
                // not be zero if only one dimension is zero, so
                // we don't want to call 'offset'.
                // This pointer will never actually get used
                // if our size is '0', so it's fine to use
                // 'ptr' for both the start and end.
                let inner_end = if size == 0 {
                    ptr
                } else {
                    // Safety:
                    // If 'size' is non-zero, we know that 'ptr'
                    // is not dangling, and 'inner_offset' must lie
                    // within the allocation
                    unsafe { ptr.add(inner_offset) }
                };

                $Name {
                    ptr,
                    inner_ptr: ptr,
                    inner_end,
                    size: shape.0.value() * shape.1.value(),
                    strides,
                    _phantoms: PhantomData,
                }
            }
        }

        impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> Iterator
            for $Name<'a, N, R, C, S>
        {
            type Item = $Ref;

            #[inline]
            fn next(&mut self) -> Option<$Ref> {
                unsafe {
                    if self.size == 0 {
                        None
                    } else {
                        self.size -= 1;

                        // Jump to the next outer dimension if needed.
                        if self.ptr == self.inner_end {
                            let stride = self.strides.1.value() as isize;
                            // This might go past the end of the allocation,
                            // depending on the value of 'size'. We use
                            // `wrapping_offset` to avoid UB
                            self.inner_end = self.ptr.wrapping_offset(stride);
                            // This will always be in bounds, since
                            // we're going to dereference it
                            self.ptr = self.inner_ptr.offset(stride);
                            self.inner_ptr = self.ptr;
                        }

                        // Go to the next element.
                        let old = self.ptr;

                        // Don't offset `self.ptr` for the last element,
                        // as this will be out of bounds. Iteration is done
                        // at this point (the next call to `next` will return `None`)
                        // so this is not observable.
                        if self.size != 0 {
                            let stride = self.strides.0.value();
                            self.ptr = self.ptr.add(stride);
                        }
                        Some(mem::transmute(old))
                    }
                }
            }

            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                (self.size, Some(self.size))
            }

            #[inline]
            fn count(self) -> usize {
                self.size_hint().0
            }
        }

        impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> DoubleEndedIterator
            for $Name<'a, N, R, C, S>
        {
            #[inline]
            fn next_back(&mut self) -> Option<$Ref> {
                unsafe {
                    if self.size == 0 {
                        None
                    } else {
                        // Pre-decrement `size` such that it now counts to the
                        // element we want to return.
                        self.size -= 1;

                        // Fetch strides
                        let inner_stride = self.strides.0.value();
                        let outer_stride = self.strides.1.value();

                        // Compute number of rows
                        // Division should be exact
                        let inner_raw_size = self.inner_end.offset_from(self.inner_ptr) as usize;
                        let inner_size = inner_raw_size / inner_stride;

                        // Compute rows and cols remaining
                        let outer_remaining = self.size / inner_size;
                        let inner_remaining = self.size % inner_size;

                        // Compute pointer to last element
                        let last = self.ptr.offset(
                            (outer_remaining * outer_stride + inner_remaining * inner_stride)
                                as isize,
                        );

                        // We want either `& *last` or `&mut *last` here, depending
                        // on the mutability of `$Ref`.
                        Some(mem::transmute(last))
                    }
                }
            }
        }

        impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> ExactSizeIterator
            for $Name<'a, N, R, C, S>
        {
            #[inline]
            fn len(&self) -> usize {
                self.size
            }
        }

        impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> FusedIterator
            for $Name<'a, N, R, C, S>
        {
        }
    };
}

iterator!(struct MatrixIter for Storage.ptr -> *const N, &'a N, &'a S);
iterator!(struct MatrixIterMut for StorageMut.ptr_mut -> *mut N, &'a mut N, &'a mut S);

/*
 *
 * Row iterators.
 *
 */
#[derive(Clone)]
/// An iterator through the rows of a matrix.
pub struct RowIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
    mat: &'a Matrix<N, R, C, S>,
    curr: usize,
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> RowIter<'a, N, R, C, S> {
    pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
        RowIter { mat, curr: 0 }
    }
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIter<'a, N, R, C, S> {
    type Item = MatrixSlice<'a, N, U1, C, S::RStride, S::CStride>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.curr < self.mat.nrows() {
            let res = self.mat.row(self.curr);
            self.curr += 1;
            Some(res)
        } else {
            None
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (
            self.mat.nrows() - self.curr,
            Some(self.mat.nrows() - self.curr),
        )
    }

    #[inline]
    fn count(self) -> usize {
        self.mat.nrows() - self.curr
    }
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator
    for RowIter<'a, N, R, C, S>
{
    #[inline]
    fn len(&self) -> usize {
        self.mat.nrows() - self.curr
    }
}

/// An iterator through the mutable rows of a matrix.
pub struct RowIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
    mat: *mut Matrix<N, R, C, S>,
    curr: usize,
    phantom: PhantomData<&'a mut Matrix<N, R, C, S>>,
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterMut<'a, N, R, C, S> {
    pub(crate) fn new(mat: &'a mut Matrix<N, R, C, S>) -> Self {
        RowIterMut {
            mat,
            curr: 0,
            phantom: PhantomData,
        }
    }

    fn nrows(&self) -> usize {
        unsafe { (*self.mat).nrows() }
    }
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
    for RowIterMut<'a, N, R, C, S>
{
    type Item = MatrixSliceMut<'a, N, U1, C, S::RStride, S::CStride>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.curr < self.nrows() {
            let res = unsafe { (*self.mat).row_mut(self.curr) };
            self.curr += 1;
            Some(res)
        } else {
            None
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.nrows() - self.curr, Some(self.nrows() - self.curr))
    }

    #[inline]
    fn count(self) -> usize {
        self.nrows() - self.curr
    }
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator
    for RowIterMut<'a, N, R, C, S>
{
    #[inline]
    fn len(&self) -> usize {
        self.nrows() - self.curr
    }
}

/*
 *
 * Column iterators.
 *
 */
#[derive(Clone)]
/// An iterator through the columns of a matrix.
pub struct ColumnIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
    mat: &'a Matrix<N, R, C, S>,
    curr: usize,
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ColumnIter<'a, N, R, C, S> {
    pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
        ColumnIter { mat, curr: 0 }
    }
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator
    for ColumnIter<'a, N, R, C, S>
{
    type Item = MatrixSlice<'a, N, R, U1, S::RStride, S::CStride>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.curr < self.mat.ncols() {
            let res = self.mat.column(self.curr);
            self.curr += 1;
            Some(res)
        } else {
            None
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (
            self.mat.ncols() - self.curr,
            Some(self.mat.ncols() - self.curr),
        )
    }

    #[inline]
    fn count(self) -> usize {
        self.mat.ncols() - self.curr
    }
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator
    for ColumnIter<'a, N, R, C, S>
{
    #[inline]
    fn len(&self) -> usize {
        self.mat.ncols() - self.curr
    }
}

/// An iterator through the mutable columns of a matrix.
pub struct ColumnIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
    mat: *mut Matrix<N, R, C, S>,
    curr: usize,
    phantom: PhantomData<&'a mut Matrix<N, R, C, S>>,
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIterMut<'a, N, R, C, S> {
    pub(crate) fn new(mat: &'a mut Matrix<N, R, C, S>) -> Self {
        ColumnIterMut {
            mat,
            curr: 0,
            phantom: PhantomData,
        }
    }

    fn ncols(&self) -> usize {
        unsafe { (*self.mat).ncols() }
    }
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
    for ColumnIterMut<'a, N, R, C, S>
{
    type Item = MatrixSliceMut<'a, N, R, U1, S::RStride, S::CStride>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.curr < self.ncols() {
            let res = unsafe { (*self.mat).column_mut(self.curr) };
            self.curr += 1;
            Some(res)
        } else {
            None
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.ncols() - self.curr, Some(self.ncols() - self.curr))
    }

    #[inline]
    fn count(self) -> usize {
        self.ncols() - self.curr
    }
}

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator
    for ColumnIterMut<'a, N, R, C, S>
{
    #[inline]
    fn len(&self) -> usize {
        self.ncols() - self.curr
    }
}