1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
#[cfg(feature = "rand-no-std")]
use rand::{
    distributions::{Distribution, Standard},
    Rng,
};

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::fmt;
use std::mem;

use simba::scalar::RealField;

use crate::base::dimension::U3;
use crate::base::storage::Storage;
use crate::base::{Matrix4, Scalar, Vector, Vector3};

use crate::geometry::{Point3, Projective3};

/// A 3D perspective projection stored as a homogeneous 4x4 matrix.
pub struct Perspective3<N: Scalar> {
    matrix: Matrix4<N>,
}

impl<N: RealField> Copy for Perspective3<N> {}

impl<N: RealField> Clone for Perspective3<N> {
    #[inline]
    fn clone(&self) -> Self {
        Self::from_matrix_unchecked(self.matrix)
    }
}

impl<N: RealField> fmt::Debug for Perspective3<N> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        self.matrix.fmt(f)
    }
}

impl<N: RealField> PartialEq for Perspective3<N> {
    #[inline]
    fn eq(&self, right: &Self) -> bool {
        self.matrix == right.matrix
    }
}

#[cfg(feature = "serde-serialize")]
impl<N: RealField + Serialize> Serialize for Perspective3<N> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.matrix.serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize")]
impl<'a, N: RealField + Deserialize<'a>> Deserialize<'a> for Perspective3<N> {
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
    where
        Des: Deserializer<'a>,
    {
        let matrix = Matrix4::<N>::deserialize(deserializer)?;

        Ok(Self::from_matrix_unchecked(matrix))
    }
}

impl<N: RealField> Perspective3<N> {
    /// Creates a new perspective matrix from the aspect ratio, y field of view, and near/far planes.
    pub fn new(aspect: N, fovy: N, znear: N, zfar: N) -> Self {
        assert!(
            !relative_eq!(zfar - znear, N::zero()),
            "The near-plane and far-plane must not be superimposed."
        );
        assert!(
            !relative_eq!(aspect, N::zero()),
            "The aspect ratio must not be zero."
        );

        let matrix = Matrix4::identity();
        let mut res = Self::from_matrix_unchecked(matrix);

        res.set_fovy(fovy);
        res.set_aspect(aspect);
        res.set_znear_and_zfar(znear, zfar);

        res.matrix[(3, 3)] = N::zero();
        res.matrix[(3, 2)] = -N::one();

        res
    }

    /// Wraps the given matrix to interpret it as a 3D perspective matrix.
    ///
    /// It is not checked whether or not the given matrix actually represents a perspective
    /// projection.
    #[inline]
    pub fn from_matrix_unchecked(matrix: Matrix4<N>) -> Self {
        Self { matrix }
    }

    /// Retrieves the inverse of the underlying homogeneous matrix.
    #[inline]
    pub fn inverse(&self) -> Matrix4<N> {
        let mut res = self.to_homogeneous();

        res[(0, 0)] = N::one() / self.matrix[(0, 0)];
        res[(1, 1)] = N::one() / self.matrix[(1, 1)];
        res[(2, 2)] = N::zero();

        let m23 = self.matrix[(2, 3)];
        let m32 = self.matrix[(3, 2)];

        res[(2, 3)] = N::one() / m32;
        res[(3, 2)] = N::one() / m23;
        res[(3, 3)] = -self.matrix[(2, 2)] / (m23 * m32);

        res
    }

    /// Computes the corresponding homogeneous matrix.
    #[inline]
    pub fn to_homogeneous(&self) -> Matrix4<N> {
        self.matrix.clone_owned()
    }

    /// A reference to the underlying homogeneous transformation matrix.
    #[inline]
    pub fn as_matrix(&self) -> &Matrix4<N> {
        &self.matrix
    }

    /// A reference to this transformation seen as a `Projective3`.
    #[inline]
    pub fn as_projective(&self) -> &Projective3<N> {
        unsafe { mem::transmute(self) }
    }

    /// This transformation seen as a `Projective3`.
    #[inline]
    pub fn to_projective(&self) -> Projective3<N> {
        Projective3::from_matrix_unchecked(self.matrix)
    }

    /// Retrieves the underlying homogeneous matrix.
    #[inline]
    pub fn into_inner(self) -> Matrix4<N> {
        self.matrix
    }

    /// Retrieves the underlying homogeneous matrix.
    /// Deprecated: Use [Perspective3::into_inner] instead.
    #[deprecated(note = "use `.into_inner()` instead")]
    #[inline]
    pub fn unwrap(self) -> Matrix4<N> {
        self.matrix
    }

    /// Gets the `width / height` aspect ratio of the view frustum.
    #[inline]
    pub fn aspect(&self) -> N {
        self.matrix[(1, 1)] / self.matrix[(0, 0)]
    }

    /// Gets the y field of view of the view frustum.
    #[inline]
    pub fn fovy(&self) -> N {
        (N::one() / self.matrix[(1, 1)]).atan() * crate::convert(2.0)
    }

    /// Gets the near plane offset of the view frustum.
    #[inline]
    pub fn znear(&self) -> N {
        let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one());

        self.matrix[(2, 3)] / (ratio * crate::convert(2.0))
            - self.matrix[(2, 3)] / crate::convert(2.0)
    }

    /// Gets the far plane offset of the view frustum.
    #[inline]
    pub fn zfar(&self) -> N {
        let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one());

        (self.matrix[(2, 3)] - ratio * self.matrix[(2, 3)]) / crate::convert(2.0)
    }

    // TODO: add a method to retrieve znear and zfar simultaneously?

    // TODO: when we get specialization, specialize the Mul impl instead.
    /// Projects a point. Faster than matrix multiplication.
    #[inline]
    pub fn project_point(&self, p: &Point3<N>) -> Point3<N> {
        let inverse_denom = -N::one() / p[2];
        Point3::new(
            self.matrix[(0, 0)] * p[0] * inverse_denom,
            self.matrix[(1, 1)] * p[1] * inverse_denom,
            (self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)]) * inverse_denom,
        )
    }

    /// Un-projects a point. Faster than multiplication by the matrix inverse.
    #[inline]
    pub fn unproject_point(&self, p: &Point3<N>) -> Point3<N> {
        let inverse_denom = self.matrix[(2, 3)] / (p[2] + self.matrix[(2, 2)]);

        Point3::new(
            p[0] * inverse_denom / self.matrix[(0, 0)],
            p[1] * inverse_denom / self.matrix[(1, 1)],
            -inverse_denom,
        )
    }

    // TODO: when we get specialization, specialize the Mul impl instead.
    /// Projects a vector. Faster than matrix multiplication.
    #[inline]
    pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N>
    where
        SB: Storage<N, U3>,
    {
        let inverse_denom = -N::one() / p[2];
        Vector3::new(
            self.matrix[(0, 0)] * p[0] * inverse_denom,
            self.matrix[(1, 1)] * p[1] * inverse_denom,
            self.matrix[(2, 2)],
        )
    }

    /// Updates this perspective matrix with a new `width / height` aspect ratio of the view
    /// frustum.
    #[inline]
    pub fn set_aspect(&mut self, aspect: N) {
        assert!(
            !relative_eq!(aspect, N::zero()),
            "The aspect ratio must not be zero."
        );
        self.matrix[(0, 0)] = self.matrix[(1, 1)] / aspect;
    }

    /// Updates this perspective with a new y field of view of the view frustum.
    #[inline]
    pub fn set_fovy(&mut self, fovy: N) {
        let old_m22 = self.matrix[(1, 1)];
        self.matrix[(1, 1)] = N::one() / (fovy / crate::convert(2.0)).tan();
        self.matrix[(0, 0)] = self.matrix[(0, 0)] * (self.matrix[(1, 1)] / old_m22);
    }

    /// Updates this perspective matrix with a new near plane offset of the view frustum.
    #[inline]
    pub fn set_znear(&mut self, znear: N) {
        let zfar = self.zfar();
        self.set_znear_and_zfar(znear, zfar);
    }

    /// Updates this perspective matrix with a new far plane offset of the view frustum.
    #[inline]
    pub fn set_zfar(&mut self, zfar: N) {
        let znear = self.znear();
        self.set_znear_and_zfar(znear, zfar);
    }

    /// Updates this perspective matrix with new near and far plane offsets of the view frustum.
    #[inline]
    pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) {
        self.matrix[(2, 2)] = (zfar + znear) / (znear - zfar);
        self.matrix[(2, 3)] = zfar * znear * crate::convert(2.0) / (znear - zfar);
    }
}

#[cfg(feature = "rand-no-std")]
impl<N: RealField> Distribution<Perspective3<N>> for Standard
where
    Standard: Distribution<N>,
{
    fn sample<'a, R: Rng + ?Sized>(&self, r: &'a mut R) -> Perspective3<N> {
        use crate::base::helper;
        let znear = r.gen();
        let zfar = helper::reject_rand(r, |&x: &N| !(x - znear).is_zero());
        let aspect = helper::reject_rand(r, |&x: &N| !x.is_zero());

        Perspective3::new(aspect, r.gen(), znear, zfar)
    }
}

#[cfg(feature = "arbitrary")]
impl<N: RealField + Arbitrary> Arbitrary for Perspective3<N> {
    fn arbitrary(g: &mut Gen) -> Self {
        use crate::base::helper;
        let znear = Arbitrary::arbitrary(g);
        let zfar = helper::reject(g, |&x: &N| !(x - znear).is_zero());
        let aspect = helper::reject(g, |&x: &N| !x.is_zero());

        Self::new(aspect, Arbitrary::arbitrary(g), znear, zfar)
    }
}

impl<N: RealField> From<Perspective3<N>> for Matrix4<N> {
    #[inline]
    fn from(pers: Perspective3<N>) -> Self {
        pers.into_inner()
    }
}