1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
use approx::{AbsDiffEq, RelativeEq, UlpsEq}; use num::Zero; use std::fmt; #[cfg(feature = "abomonation-serialize")] use std::io::{Result as IOResult, Write}; #[cfg(feature = "serde-serialize")] use crate::base::storage::Owned; #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; #[cfg(feature = "abomonation-serialize")] use abomonation::Abomonation; use simba::scalar::{ClosedNeg, RealField}; use simba::simd::{SimdBool, SimdOption, SimdRealField}; use crate::base::dimension::{U1, U3, U4}; use crate::base::storage::{CStride, RStride}; use crate::base::{ Matrix3, Matrix4, MatrixSlice, MatrixSliceMut, Normed, Scalar, Unit, Vector3, Vector4, }; use crate::geometry::{Point3, Rotation}; /// A quaternion. See the type alias `UnitQuaternion = Unit<Quaternion>` for a quaternion /// that may be used as a rotation. #[repr(C)] #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)] pub struct Quaternion<N: Scalar> { /// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order. pub coords: Vector4<N>, } impl<N: Scalar + Zero> Default for Quaternion<N> { fn default() -> Self { Quaternion { coords: Vector4::zeros(), } } } #[cfg(feature = "bytemuck")] unsafe impl<N: Scalar> bytemuck::Zeroable for Quaternion<N> where Vector4<N>: bytemuck::Zeroable {} #[cfg(feature = "bytemuck")] unsafe impl<N: Scalar> bytemuck::Pod for Quaternion<N> where Vector4<N>: bytemuck::Pod, N: Copy, { } #[cfg(feature = "abomonation-serialize")] impl<N: Scalar> Abomonation for Quaternion<N> where Vector4<N>: Abomonation, { unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> { self.coords.entomb(writer) } fn extent(&self) -> usize { self.coords.extent() } unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> { self.coords.exhume(bytes) } } #[cfg(feature = "serde-serialize")] impl<N: Scalar> Serialize for Quaternion<N> where Owned<N, U4>: Serialize, { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { self.coords.serialize(serializer) } } #[cfg(feature = "serde-serialize")] impl<'a, N: Scalar> Deserialize<'a> for Quaternion<N> where Owned<N, U4>: Deserialize<'a>, { fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error> where Des: Deserializer<'a>, { let coords = Vector4::<N>::deserialize(deserializer)?; Ok(Self::from(coords)) } } impl<N: SimdRealField> Quaternion<N> where N::Element: SimdRealField, { /// Moves this unit quaternion into one that owns its data. #[inline] #[deprecated(note = "This method is a no-op and will be removed in a future release.")] pub fn into_owned(self) -> Self { self } /// Clones this unit quaternion into one that owns its data. #[inline] #[deprecated(note = "This method is a no-op and will be removed in a future release.")] pub fn clone_owned(&self) -> Self { Self::from(self.coords.clone_owned()) } /// Normalizes this quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let q_normalized = q.normalize(); /// relative_eq!(q_normalized.norm(), 1.0); /// ``` #[inline] #[must_use = "Did you mean to use normalize_mut()?"] pub fn normalize(&self) -> Self { Self::from(self.coords.normalize()) } /// The imaginary part of this quaternion. #[inline] pub fn imag(&self) -> Vector3<N> { self.coords.xyz() } /// The conjugate of this quaternion. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let conj = q.conjugate(); /// assert!(conj.i == -2.0 && conj.j == -3.0 && conj.k == -4.0 && conj.w == 1.0); /// ``` #[inline] #[must_use = "Did you mean to use conjugate_mut()?"] pub fn conjugate(&self) -> Self { Self::from_parts(self.w, -self.imag()) } /// Linear interpolation between two quaternion. /// /// Computes `self * (1 - t) + other * t`. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let q2 = Quaternion::new(10.0, 20.0, 30.0, 40.0); /// /// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(1.9, 3.8, 5.7, 7.6)); /// ``` #[inline] pub fn lerp(&self, other: &Self, t: N) -> Self { self * (N::one() - t) + other * t } /// The vector part `(i, j, k)` of this quaternion. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_eq!(q.vector()[0], 2.0); /// assert_eq!(q.vector()[1], 3.0); /// assert_eq!(q.vector()[2], 4.0); /// ``` #[inline] pub fn vector(&self) -> MatrixSlice<N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>> { self.coords.fixed_rows::<U3>(0) } /// The scalar part `w` of this quaternion. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_eq!(q.scalar(), 1.0); /// ``` #[inline] pub fn scalar(&self) -> N { self.coords[3] } /// Reinterprets this quaternion as a 4D vector. /// /// # Example /// ``` /// # use nalgebra::{Vector4, Quaternion}; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// // Recall that the quaternion is stored internally as (i, j, k, w) /// // while the crate::new constructor takes the arguments as (w, i, j, k). /// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0)); /// ``` #[inline] pub fn as_vector(&self) -> &Vector4<N> { &self.coords } /// The norm of this quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_relative_eq!(q.norm(), 5.47722557, epsilon = 1.0e-6); /// ``` #[inline] pub fn norm(&self) -> N { self.coords.norm() } /// A synonym for the norm of this quaternion. /// /// Aka the length. /// This is the same as `.norm()` /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_relative_eq!(q.magnitude(), 5.47722557, epsilon = 1.0e-6); /// ``` #[inline] pub fn magnitude(&self) -> N { self.norm() } /// The squared norm of this quaternion. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_eq!(q.magnitude_squared(), 30.0); /// ``` #[inline] pub fn norm_squared(&self) -> N { self.coords.norm_squared() } /// A synonym for the squared norm of this quaternion. /// /// Aka the squared length. /// This is the same as `.norm_squared()` /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_eq!(q.magnitude_squared(), 30.0); /// ``` #[inline] pub fn magnitude_squared(&self) -> N { self.norm_squared() } /// The dot product of two quaternions. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let q2 = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// assert_eq!(q1.dot(&q2), 70.0); /// ``` #[inline] pub fn dot(&self, rhs: &Self) -> N { self.coords.dot(&rhs.coords) } } impl<N: SimdRealField> Quaternion<N> where N::Element: SimdRealField, { /// Inverts this quaternion if it is not zero. /// /// This method also does not works with SIMD components (see `simd_try_inverse` instead). /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let inv_q = q.try_inverse(); /// /// assert!(inv_q.is_some()); /// assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity()); /// /// //Non-invertible case /// let q = Quaternion::new(0.0, 0.0, 0.0, 0.0); /// let inv_q = q.try_inverse(); /// /// assert!(inv_q.is_none()); /// ``` #[inline] #[must_use = "Did you mean to use try_inverse_mut()?"] pub fn try_inverse(&self) -> Option<Self> where N: RealField, { let mut res = *self; if res.try_inverse_mut() { Some(res) } else { None } } /// Attempt to inverse this quaternion. /// /// This method also works with SIMD components. #[inline] #[must_use = "Did you mean to use try_inverse_mut()?"] pub fn simd_try_inverse(&self) -> SimdOption<Self> { let norm_squared = self.norm_squared(); let ge = norm_squared.simd_ge(N::simd_default_epsilon()); SimdOption::new(self.conjugate() / norm_squared, ge) } /// Calculates the inner product (also known as the dot product). /// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel /// Formula 4.89. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let expected = Quaternion::new(-20.0, 0.0, 0.0, 0.0); /// let result = a.inner(&b); /// assert_relative_eq!(expected, result, epsilon = 1.0e-5); #[inline] pub fn inner(&self, other: &Self) -> Self { (self * other + other * self).half() } /// Calculates the outer product (also known as the wedge product). /// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel /// Formula 4.89. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let expected = Quaternion::new(0.0, -5.0, 18.0, -11.0); /// let result = a.outer(&b); /// assert_relative_eq!(expected, result, epsilon = 1.0e-5); /// ``` #[inline] pub fn outer(&self, other: &Self) -> Self { #[allow(clippy::eq_op)] (self * other - other * self).half() } /// Calculates the projection of `self` onto `other` (also known as the parallel). /// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel /// Formula 4.94. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let expected = Quaternion::new(0.0, 3.333333333333333, 1.3333333333333333, 0.6666666666666666); /// let result = a.project(&b).unwrap(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-5); /// ``` #[inline] pub fn project(&self, other: &Self) -> Option<Self> where N: RealField, { self.inner(other).right_div(other) } /// Calculates the rejection of `self` from `other` (also known as the perpendicular). /// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel /// Formula 4.94. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let expected = Quaternion::new(0.0, -1.3333333333333333, 1.6666666666666665, 3.3333333333333335); /// let result = a.reject(&b).unwrap(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-5); /// ``` #[inline] pub fn reject(&self, other: &Self) -> Option<Self> where N: RealField, { self.outer(other).right_div(other) } /// The polar decomposition of this quaternion. /// /// Returns, from left to right: the quaternion norm, the half rotation angle, the rotation /// axis. If the rotation angle is zero, the rotation axis is set to `None`. /// /// # Example /// ``` /// # use std::f32; /// # use nalgebra::{Vector3, Quaternion}; /// let q = Quaternion::new(0.0, 5.0, 0.0, 0.0); /// let (norm, half_ang, axis) = q.polar_decomposition(); /// assert_eq!(norm, 5.0); /// assert_eq!(half_ang, f32::consts::FRAC_PI_2); /// assert_eq!(axis, Some(Vector3::x_axis())); /// ``` pub fn polar_decomposition(&self) -> (N, N, Option<Unit<Vector3<N>>>) where N: RealField, { if let Some((q, n)) = Unit::try_new_and_get(*self, N::zero()) { if let Some(axis) = Unit::try_new(self.vector().clone_owned(), N::zero()) { let angle = q.angle() / crate::convert(2.0f64); (n, angle, Some(axis)) } else { (n, N::zero(), None) } } else { (N::zero(), N::zero(), None) } } /// Compute the natural logarithm of a quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(2.0, 5.0, 0.0, 0.0); /// assert_relative_eq!(q.ln(), Quaternion::new(1.683647, 1.190289, 0.0, 0.0), epsilon = 1.0e-6) /// ``` #[inline] pub fn ln(&self) -> Self { let n = self.norm(); let v = self.vector(); let s = self.scalar(); Self::from_parts(n.simd_ln(), v.normalize() * (s / n).simd_acos()) } /// Compute the exponential of a quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0); /// assert_relative_eq!(q.exp(), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5) /// ``` #[inline] pub fn exp(&self) -> Self { self.exp_eps(N::simd_default_epsilon()) } /// Compute the exponential of a quaternion. Returns the identity if the vector part of this quaternion /// has a norm smaller than `eps`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0); /// assert_relative_eq!(q.exp_eps(1.0e-6), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5); /// /// // Singular case. /// let q = Quaternion::new(0.0000001, 0.0, 0.0, 0.0); /// assert_eq!(q.exp_eps(1.0e-6), Quaternion::identity()); /// ``` #[inline] pub fn exp_eps(&self, eps: N) -> Self { let v = self.vector(); let nn = v.norm_squared(); let le = nn.simd_le(eps * eps); le.if_else(Self::identity, || { let w_exp = self.scalar().simd_exp(); let n = nn.simd_sqrt(); let nv = v * (w_exp * n.simd_sin() / n); Self::from_parts(w_exp * n.simd_cos(), nv) }) } /// Raise the quaternion to a given floating power. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_relative_eq!(q.powf(1.5), Quaternion::new( -6.2576659, 4.1549037, 6.2323556, 8.3098075), epsilon = 1.0e-6); /// ``` #[inline] pub fn powf(&self, n: N) -> Self { (self.ln() * n).exp() } /// Transforms this quaternion into its 4D vector form (Vector part, Scalar part). /// /// # Example /// ``` /// # use nalgebra::{Quaternion, Vector4}; /// let mut q = Quaternion::identity(); /// *q.as_vector_mut() = Vector4::new(1.0, 2.0, 3.0, 4.0); /// assert!(q.i == 1.0 && q.j == 2.0 && q.k == 3.0 && q.w == 4.0); /// ``` #[inline] pub fn as_vector_mut(&mut self) -> &mut Vector4<N> { &mut self.coords } /// The mutable vector part `(i, j, k)` of this quaternion. /// /// # Example /// ``` /// # use nalgebra::{Quaternion, Vector4}; /// let mut q = Quaternion::identity(); /// { /// let mut v = q.vector_mut(); /// v[0] = 2.0; /// v[1] = 3.0; /// v[2] = 4.0; /// } /// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0); /// ``` #[inline] pub fn vector_mut( &mut self, ) -> MatrixSliceMut<N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>> { self.coords.fixed_rows_mut::<U3>(0) } /// Replaces this quaternion by its conjugate. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// q.conjugate_mut(); /// assert!(q.i == -2.0 && q.j == -3.0 && q.k == -4.0 && q.w == 1.0); /// ``` #[inline] pub fn conjugate_mut(&mut self) { self.coords[0] = -self.coords[0]; self.coords[1] = -self.coords[1]; self.coords[2] = -self.coords[2]; } /// Inverts this quaternion in-place if it is not zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let mut q = Quaternion::new(1.0f32, 2.0, 3.0, 4.0); /// /// assert!(q.try_inverse_mut()); /// assert_relative_eq!(q * Quaternion::new(1.0, 2.0, 3.0, 4.0), Quaternion::identity()); /// /// //Non-invertible case /// let mut q = Quaternion::new(0.0f32, 0.0, 0.0, 0.0); /// assert!(!q.try_inverse_mut()); /// ``` #[inline] pub fn try_inverse_mut(&mut self) -> N::SimdBool { let norm_squared = self.norm_squared(); let ge = norm_squared.simd_ge(N::simd_default_epsilon()); *self = ge.if_else(|| self.conjugate() / norm_squared, || *self); ge } /// Normalizes this quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// q.normalize_mut(); /// assert_relative_eq!(q.norm(), 1.0); /// ``` #[inline] pub fn normalize_mut(&mut self) -> N { self.coords.normalize_mut() } /// Calculates square of a quaternion. #[inline] pub fn squared(&self) -> Self { self * self } /// Divides quaternion into two. #[inline] pub fn half(&self) -> Self { self / crate::convert(2.0f64) } /// Calculates square root. #[inline] pub fn sqrt(&self) -> Self { self.powf(crate::convert(0.5)) } /// Check if the quaternion is pure. /// /// A quaternion is pure if it has no real part (`self.w == 0.0`). #[inline] pub fn is_pure(&self) -> bool { self.w.is_zero() } /// Convert quaternion to pure quaternion. #[inline] pub fn pure(&self) -> Self { Self::from_imag(self.imag()) } /// Left quaternionic division. /// /// Calculates B<sup>-1</sup> * A where A = self, B = other. #[inline] pub fn left_div(&self, other: &Self) -> Option<Self> where N: RealField, { other.try_inverse().map(|inv| inv * self) } /// Right quaternionic division. /// /// Calculates A * B<sup>-1</sup> where A = self, B = other. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 1.0, 2.0, 3.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let result = a.right_div(&b).unwrap(); /// let expected = Quaternion::new(0.4, 0.13333333333333336, -0.4666666666666667, 0.26666666666666666); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn right_div(&self, other: &Self) -> Option<Self> where N: RealField, { other.try_inverse().map(|inv| self * inv) } /// Calculates the quaternionic cosinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(58.93364616794395, -34.086183690465596, -51.1292755356984, -68.17236738093119); /// let result = input.cos(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn cos(&self) -> Self { let z = self.imag().magnitude(); let w = -self.w.simd_sin() * z.simd_sinhc(); Self::from_parts(self.w.simd_cos() * z.simd_cosh(), self.imag() * w) } /// Calculates the quaternionic arccosinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let result = input.cos().acos(); /// assert_relative_eq!(input, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn acos(&self) -> Self { let u = Self::from_imag(self.imag().normalize()); let identity = Self::identity(); let z = (self + (self.squared() - identity).sqrt()).ln(); -(u * z) } /// Calculates the quaternionic sinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(91.78371578403467, 21.886486853029176, 32.82973027954377, 43.77297370605835); /// let result = input.sin(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn sin(&self) -> Self { let z = self.imag().magnitude(); let w = self.w.simd_cos() * z.simd_sinhc(); Self::from_parts(self.w.simd_sin() * z.simd_cosh(), self.imag() * w) } /// Calculates the quaternionic arcsinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let result = input.sin().asin(); /// assert_relative_eq!(input, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn asin(&self) -> Self { let u = Self::from_imag(self.imag().normalize()); let identity = Self::identity(); let z = ((u * self) + (identity - self.squared()).sqrt()).ln(); -(u * z) } /// Calculates the quaternionic tangent. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(0.00003821631725009489, 0.3713971716439371, 0.5570957574659058, 0.7427943432878743); /// let result = input.tan(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn tan(&self) -> Self where N: RealField, { self.sin().right_div(&self.cos()).unwrap() } /// Calculates the quaternionic arctangent. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let result = input.tan().atan(); /// assert_relative_eq!(input, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn atan(&self) -> Self where N: RealField, { let u = Self::from_imag(self.imag().normalize()); let num = u + self; let den = u - self; let fr = num.right_div(&den).unwrap(); let ln = fr.ln(); (u.half()) * ln } /// Calculates the hyperbolic quaternionic sinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(0.7323376060463428, -0.4482074499805421, -0.6723111749708133, -0.8964148999610843); /// let result = input.sinh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn sinh(&self) -> Self { (self.exp() - (-self).exp()).half() } /// Calculates the hyperbolic quaternionic arcsinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(2.385889902585242, 0.514052600662788, 0.7710789009941821, 1.028105201325576); /// let result = input.asinh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn asinh(&self) -> Self { let identity = Self::identity(); (self + (identity + self.squared()).sqrt()).ln() } /// Calculates the hyperbolic quaternionic cosinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(0.9615851176369566, -0.3413521745610167, -0.5120282618415251, -0.6827043491220334); /// let result = input.cosh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn cosh(&self) -> Self { (self.exp() + (-self).exp()).half() } /// Calculates the hyperbolic quaternionic arccosinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(2.4014472020074007, 0.5162761016176176, 0.7744141524264264, 1.0325522032352352); /// let result = input.acosh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn acosh(&self) -> Self { let identity = Self::identity(); (self + (self + identity).sqrt() * (self - identity).sqrt()).ln() } /// Calculates the hyperbolic quaternionic tangent. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(1.0248695360556623, -0.10229568178876419, -0.1534435226831464, -0.20459136357752844); /// let result = input.tanh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn tanh(&self) -> Self where N: RealField, { self.sinh().right_div(&self.cosh()).unwrap() } /// Calculates the hyperbolic quaternionic arctangent. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(0.03230293287000163, 0.5173453683196951, 0.7760180524795426, 1.0346907366393903); /// let result = input.atanh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] pub fn atanh(&self) -> Self { let identity = Self::identity(); ((identity + self).ln() - (identity - self).ln()).half() } } impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq for Quaternion<N> { type Epsilon = N; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.as_vector().abs_diff_eq(other.as_vector(), epsilon) || // Account for the double-covering of S², i.e. q = -q self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-*b, epsilon)) } } impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq for Quaternion<N> { #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.as_vector().relative_eq(other.as_vector(), epsilon, max_relative) || // Account for the double-covering of S², i.e. q = -q self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.relative_eq(&-*b, epsilon, max_relative)) } } impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq for Quaternion<N> { #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.as_vector().ulps_eq(other.as_vector(), epsilon, max_ulps) || // Account for the double-covering of S², i.e. q = -q. self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.ulps_eq(&-*b, epsilon, max_ulps)) } } impl<N: RealField + fmt::Display> fmt::Display for Quaternion<N> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "Quaternion {} − ({}, {}, {})", self[3], self[0], self[1], self[2] ) } } /// A unit quaternions. May be used to represent a rotation. pub type UnitQuaternion<N> = Unit<Quaternion<N>>; impl<N: Scalar + ClosedNeg + PartialEq> PartialEq for UnitQuaternion<N> { #[inline] fn eq(&self, rhs: &Self) -> bool { self.coords == rhs.coords || // Account for the double-covering of S², i.e. q = -q self.coords.iter().zip(rhs.coords.iter()).all(|(a, b)| *a == -b.inlined_clone()) } } impl<N: Scalar + ClosedNeg + Eq> Eq for UnitQuaternion<N> {} impl<N: SimdRealField> Normed for Quaternion<N> { type Norm = N::SimdRealField; #[inline] fn norm(&self) -> N::SimdRealField { self.coords.norm() } #[inline] fn norm_squared(&self) -> N::SimdRealField { self.coords.norm_squared() } #[inline] fn scale_mut(&mut self, n: Self::Norm) { self.coords.scale_mut(n) } #[inline] fn unscale_mut(&mut self, n: Self::Norm) { self.coords.unscale_mut(n) } } impl<N: SimdRealField> UnitQuaternion<N> where N::Element: SimdRealField, { /// The rotation angle in [0; pi] of this unit quaternion. /// /// # Example /// ``` /// # use nalgebra::{Unit, UnitQuaternion, Vector3}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); /// assert_eq!(rot.angle(), 1.78); /// ``` #[inline] pub fn angle(&self) -> N { let w = self.quaternion().scalar().simd_abs(); self.quaternion().imag().norm().simd_atan2(w) * crate::convert(2.0f64) } /// The underlying quaternion. /// /// Same as `self.as_ref()`. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Quaternion}; /// let axis = UnitQuaternion::identity(); /// assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0)); /// ``` #[inline] pub fn quaternion(&self) -> &Quaternion<N> { self.as_ref() } /// Compute the conjugate of this unit quaternion. /// /// # Example /// ``` /// # use nalgebra::{Unit, UnitQuaternion, Vector3}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); /// let conj = rot.conjugate(); /// assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78)); /// ``` #[inline] #[must_use = "Did you mean to use conjugate_mut()?"] pub fn conjugate(&self) -> Self { Self::new_unchecked(self.as_ref().conjugate()) } /// Inverts this quaternion if it is not zero. /// /// # Example /// ``` /// # use nalgebra::{Unit, UnitQuaternion, Vector3}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); /// let inv = rot.inverse(); /// assert_eq!(rot * inv, UnitQuaternion::identity()); /// assert_eq!(inv * rot, UnitQuaternion::identity()); /// ``` #[inline] #[must_use = "Did you mean to use inverse_mut()?"] pub fn inverse(&self) -> Self { self.conjugate() } /// The rotation angle needed to make `self` and `other` coincide. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0); /// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1); /// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6); /// ``` #[inline] pub fn angle_to(&self, other: &Self) -> N { let delta = self.rotation_to(other); delta.angle() } /// The unit quaternion needed to make `self` and `other` coincide. /// /// The result is such that: `self.rotation_to(other) * self == other`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0); /// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1); /// let rot_to = rot1.rotation_to(&rot2); /// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6); /// ``` #[inline] pub fn rotation_to(&self, other: &Self) -> Self { other / self } /// Linear interpolation between two unit quaternions. /// /// The result is not normalized. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Quaternion}; /// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0)); /// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0)); /// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0)); /// ``` #[inline] pub fn lerp(&self, other: &Self, t: N) -> Quaternion<N> { self.as_ref().lerp(other.as_ref(), t) } /// Normalized linear interpolation between two unit quaternions. /// /// This is the same as `self.lerp` except that the result is normalized. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Quaternion}; /// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0)); /// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0)); /// assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0))); /// ``` #[inline] pub fn nlerp(&self, other: &Self, t: N) -> Self { let mut res = self.lerp(other, t); let _ = res.normalize_mut(); Self::new_unchecked(res) } /// Spherical linear interpolation between two unit quaternions. /// /// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation /// is not well-defined). Use `.try_slerp` instead to avoid the panic. /// /// # Examples: /// /// ``` /// # use nalgebra::geometry::UnitQuaternion; /// /// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); /// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); /// /// let q = q1.slerp(&q2, 1.0 / 3.0); /// /// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0)); /// ``` #[inline] pub fn slerp(&self, other: &Self, t: N) -> Self where N: RealField, { self.try_slerp(other, t, N::default_epsilon()) .expect("Quaternion slerp: ambiguous configuration.") } /// Computes the spherical linear interpolation between two unit quaternions or returns `None` /// if both quaternions are approximately 180 degrees apart (in which case the interpolation is /// not well-defined). /// /// # Arguments /// * `self`: the first quaternion to interpolate from. /// * `other`: the second quaternion to interpolate toward. /// * `t`: the interpolation parameter. Should be between 0 and 1. /// * `epsilon`: the value below which the sinus of the angle separating both quaternion /// must be to return `None`. #[inline] pub fn try_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self> where N: RealField, { let coords = if self.coords.dot(&other.coords) < N::zero() { Unit::new_unchecked(self.coords).try_slerp( &Unit::new_unchecked(-other.coords), t, epsilon, ) } else { Unit::new_unchecked(self.coords).try_slerp( &Unit::new_unchecked(other.coords), t, epsilon, ) }; coords.map(|q| Unit::new_unchecked(Quaternion::from(q.into_inner()))) } /// Compute the conjugate of this unit quaternion in-place. #[inline] pub fn conjugate_mut(&mut self) { self.as_mut_unchecked().conjugate_mut() } /// Inverts this quaternion if it is not zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axisangle = Vector3::new(0.1, 0.2, 0.3); /// let mut rot = UnitQuaternion::new(axisangle); /// rot.inverse_mut(); /// assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity()); /// assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity()); /// ``` #[inline] pub fn inverse_mut(&mut self) { self.as_mut_unchecked().conjugate_mut() } /// The rotation axis of this unit quaternion or `None` if the rotation is zero. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = UnitQuaternion::from_axis_angle(&axis, angle); /// assert_eq!(rot.axis(), Some(axis)); /// /// // Case with a zero angle. /// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0); /// assert!(rot.axis().is_none()); /// ``` #[inline] pub fn axis(&self) -> Option<Unit<Vector3<N>>> where N: RealField, { let v = if self.quaternion().scalar() >= N::zero() { self.as_ref().vector().clone_owned() } else { -self.as_ref().vector() }; Unit::try_new(v, N::zero()) } /// The rotation axis of this unit quaternion multiplied by the rotation angle. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axisangle = Vector3::new(0.1, 0.2, 0.3); /// let rot = UnitQuaternion::new(axisangle); /// assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_axis(&self) -> Vector3<N> where N: RealField, { if let Some(axis) = self.axis() { axis.into_inner() * self.angle() } else { Vector3::zero() } } /// The rotation axis and angle in ]0, pi] of this unit quaternion. /// /// Returns `None` if the angle is zero. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = UnitQuaternion::from_axis_angle(&axis, angle); /// assert_eq!(rot.axis_angle(), Some((axis, angle))); /// /// // Case with a zero angle. /// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0); /// assert!(rot.axis_angle().is_none()); /// ``` #[inline] pub fn axis_angle(&self) -> Option<(Unit<Vector3<N>>, N)> where N: RealField, { self.axis().map(|axis| (axis, self.angle())) } /// Compute the exponential of a quaternion. /// /// Note that this function yields a `Quaternion<N>` because it loses the unit property. #[inline] pub fn exp(&self) -> Quaternion<N> { self.as_ref().exp() } /// Compute the natural logarithm of a quaternion. /// /// Note that this function yields a `Quaternion<N>` because it loses the unit property. /// The vector part of the return value corresponds to the axis-angle representation (divided /// by 2.0) of this unit quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector3, UnitQuaternion}; /// let axisangle = Vector3::new(0.1, 0.2, 0.3); /// let q = UnitQuaternion::new(axisangle); /// assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6); /// ``` #[inline] pub fn ln(&self) -> Quaternion<N> where N: RealField, { if let Some(v) = self.axis() { Quaternion::from_imag(v.into_inner() * self.angle()) } else { Quaternion::zero() } } /// Raise the quaternion to a given floating power. /// /// This returns the unit quaternion that identifies a rotation with axis `self.axis()` and /// angle `self.angle() × n`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = UnitQuaternion::from_axis_angle(&axis, angle); /// let pow = rot.powf(2.0); /// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6); /// assert_eq!(pow.angle(), 2.4); /// ``` #[inline] pub fn powf(&self, n: N) -> Self where N: RealField, { if let Some(v) = self.axis() { Self::from_axis_angle(&v, self.angle() * n) } else { Self::identity() } } /// Builds a rotation matrix from this unit quaternion. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3, Matrix3}; /// let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); /// let rot = q.to_rotation_matrix(); /// let expected = Matrix3::new(0.8660254, -0.5, 0.0, /// 0.5, 0.8660254, 0.0, /// 0.0, 0.0, 1.0); /// /// assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6); /// ``` #[inline] pub fn to_rotation_matrix(&self) -> Rotation<N, U3> { let i = self.as_ref()[0]; let j = self.as_ref()[1]; let k = self.as_ref()[2]; let w = self.as_ref()[3]; let ww = w * w; let ii = i * i; let jj = j * j; let kk = k * k; let ij = i * j * crate::convert(2.0f64); let wk = w * k * crate::convert(2.0f64); let wj = w * j * crate::convert(2.0f64); let ik = i * k * crate::convert(2.0f64); let jk = j * k * crate::convert(2.0f64); let wi = w * i * crate::convert(2.0f64); Rotation::from_matrix_unchecked(Matrix3::new( ww + ii - jj - kk, ij - wk, wj + ik, wk + ij, ww - ii + jj - kk, jk - wi, ik - wj, wi + jk, ww - ii - jj + kk, )) } /// Converts this unit quaternion into its equivalent Euler angles. /// /// The angles are produced in the form (roll, pitch, yaw). #[inline] #[deprecated(note = "This is renamed to use `.euler_angles()`.")] pub fn to_euler_angles(&self) -> (N, N, N) where N: RealField, { self.euler_angles() } /// Retrieves the euler angles corresponding to this unit quaternion. /// /// The angles are produced in the form (roll, pitch, yaw). /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::UnitQuaternion; /// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3); /// let euler = rot.euler_angles(); /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6); /// ``` #[inline] pub fn euler_angles(&self) -> (N, N, N) where N: RealField, { self.to_rotation_matrix().euler_angles() } /// Converts this unit quaternion into its equivalent homogeneous transformation matrix. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3, Matrix4}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); /// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0, /// 0.5, 0.8660254, 0.0, 0.0, /// 0.0, 0.0, 1.0, 0.0, /// 0.0, 0.0, 0.0, 1.0); /// /// assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6); /// ``` #[inline] pub fn to_homogeneous(&self) -> Matrix4<N> { self.to_rotation_matrix().to_homogeneous() } /// Rotate a point by this unit quaternion. /// /// This is the same as the multiplication `self * pt`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3, Point3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); /// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0)); /// /// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn transform_point(&self, pt: &Point3<N>) -> Point3<N> { self * pt } /// Rotate a vector by this unit quaternion. /// /// This is the same as the multiplication `self * v`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); /// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0)); /// /// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn transform_vector(&self, v: &Vector3<N>) -> Vector3<N> { self * v } /// Rotate a point by the inverse of this unit quaternion. This may be /// cheaper than inverting the unit quaternion and transforming the /// point. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3, Point3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); /// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0)); /// /// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn inverse_transform_point(&self, pt: &Point3<N>) -> Point3<N> { // TODO: would it be useful performancewise not to call inverse explicitly (i-e. implement // the inverse transformation explicitly here) ? self.inverse() * pt } /// Rotate a vector by the inverse of this unit quaternion. This may be /// cheaper than inverting the unit quaternion and transforming the /// vector. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); /// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0)); /// /// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn inverse_transform_vector(&self, v: &Vector3<N>) -> Vector3<N> { self.inverse() * v } /// Rotate a vector by the inverse of this unit quaternion. This may be /// cheaper than inverting the unit quaternion and transforming the /// vector. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_2); /// let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis()); /// /// assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6); /// ``` #[inline] pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector3<N>>) -> Unit<Vector3<N>> { self.inverse() * v } /// Appends to `self` a rotation given in the axis-angle form, using a linearized formulation. /// /// This is faster, but approximate, way to compute `UnitQuaternion::new(axisangle) * self`. #[inline] pub fn append_axisangle_linearized(&self, axisangle: &Vector3<N>) -> Self { let half: N = crate::convert(0.5); let q1 = self.into_inner(); let q2 = Quaternion::from_imag(axisangle * half); Unit::new_normalize(q1 + q2 * q1) } } impl<N: RealField> Default for UnitQuaternion<N> { fn default() -> Self { Self::identity() } } impl<N: RealField + fmt::Display> fmt::Display for UnitQuaternion<N> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if let Some(axis) = self.axis() { let axis = axis.into_inner(); write!( f, "UnitQuaternion angle: {} − axis: ({}, {}, {})", self.angle(), axis[0], axis[1], axis[2] ) } else { write!( f, "UnitQuaternion angle: {} − axis: (undefined)", self.angle() ) } } } impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq for UnitQuaternion<N> { type Epsilon = N; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.as_ref().abs_diff_eq(other.as_ref(), epsilon) } } impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq for UnitQuaternion<N> { #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.as_ref() .relative_eq(other.as_ref(), epsilon, max_relative) } } impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq for UnitQuaternion<N> { #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps) } }