1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, MatrixN, VectorN};
use crate::dimension::{DimDiff, DimSub, U1};
use crate::storage::Storage;
use simba::scalar::ComplexField;
use crate::linalg::householder;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Serialize,
VectorN<N, DimDiff<D, U1>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Deserialize<'de>,
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Hessenberg<N: ComplexField, D: DimSub<U1>>
where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
{
hess: MatrixN<N, D>,
subdiag: VectorN<N, DimDiff<D, U1>>,
}
impl<N: ComplexField, D: DimSub<U1>> Copy for Hessenberg<N, D>
where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Copy,
VectorN<N, DimDiff<D, U1>>: Copy,
{
}
impl<N: ComplexField, D: DimSub<U1>> Hessenberg<N, D>
where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>,
{
pub fn new(hess: MatrixN<N, D>) -> Self {
let mut work =
unsafe { crate::unimplemented_or_uninitialized_generic!(hess.data.shape().0, U1) };
Self::new_with_workspace(hess, &mut work)
}
pub fn new_with_workspace(mut hess: MatrixN<N, D>, work: &mut VectorN<N, D>) -> Self {
assert!(
hess.is_square(),
"Cannot compute the hessenberg decomposition of a non-square matrix."
);
let dim = hess.data.shape().0;
assert!(
dim.value() != 0,
"Cannot compute the hessenberg decomposition of an empty matrix."
);
assert_eq!(
dim.value(),
work.len(),
"Hessenberg: invalid workspace size."
);
let mut subdiag =
unsafe { crate::unimplemented_or_uninitialized_generic!(dim.sub(U1), U1) };
if dim.value() == 0 {
return Hessenberg { hess, subdiag };
}
for ite in 0..dim.value() - 1 {
householder::clear_column_unchecked(&mut hess, &mut subdiag[ite], ite, 1, Some(work));
}
Hessenberg { hess, subdiag }
}
#[inline]
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>) {
let q = self.q();
(q, self.unpack_h())
}
#[inline]
pub fn unpack_h(mut self) -> MatrixN<N, D> {
let dim = self.hess.nrows();
self.hess.fill_lower_triangle(N::zero(), 2);
self.hess
.slice_mut((1, 0), (dim - 1, dim - 1))
.set_partial_diagonal(self.subdiag.iter().map(|e| N::from_real(e.modulus())));
self.hess
}
#[inline]
pub fn h(&self) -> MatrixN<N, D> {
let dim = self.hess.nrows();
let mut res = self.hess.clone();
res.fill_lower_triangle(N::zero(), 2);
res.slice_mut((1, 0), (dim - 1, dim - 1))
.set_partial_diagonal(self.subdiag.iter().map(|e| N::from_real(e.modulus())));
res
}
pub fn q(&self) -> MatrixN<N, D> {
householder::assemble_q(&self.hess, self.subdiag.as_slice())
}
#[doc(hidden)]
pub fn hess_internal(&self) -> &MatrixN<N, D> {
&self.hess
}
}