Files
a0_basic_app
a1_vehicle
a2_async_sim
ab_glyph
ab_glyph_rasterizer
adler
adler32
agents
aho_corasick
anyhow
approx
aquamarine
ash
atty
bitflags
bytemuck
byteorder
cache_padded
cfg_if
chrono
color_quant
crc32fast
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
deflate
draw2d
either
flexi_logger
generic_array
gif
glfw
glfw_sys
glob
image
indoc
itertools
jpeg_decoder
lazy_static
libc
libloading
log
matrixmultiply
memchr
memoffset
miniz_oxide
nalgebra
base
geometry
linalg
third_party
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
owned_ttf_parser
paste
png
proc_macro2
proc_macro_error
proc_macro_error_attr
quote
raw_window_handle
rawpointer
rayon
rayon_core
regex
regex_syntax
scoped_threadpool
scopeguard
semver
semver_parser
serde
serde_derive
simba
smawk
spin_sleep
syn
terminal_size
textwrap
thiserror
thiserror_impl
tiff
time
triple_buffer
ttf_parser
typenum
unicode_width
unicode_xid
unindent
vk_sys
weezl
yansi
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*!
__Simba__ is a crate defining a set of trait for writing code that can be generic with regard to the
number of lanes of the numeric input value. Those traits are implemented by `f32`, `u32`, `i16`,
`bool` as well as SIMD types like `f32x4, u32x8, i16x2`, etc.

One example of use-case applied by the [nalgebra crate](https://nalgebra.org) is to define generic methods
like vector normalization that will work for `Vector3<f32>` as well as `Vector3<f32x4>`.

This makes it easier leverage the power of [SIMD Array-of-Struct-of-Array (AoSoA)](https://www.rustsim.org/blog/2020/03/23/simd-aosoa-in-nalgebra/)
with less code duplication.


## Cargo features

Two cargo features can be optionally enabled:
- With the __`packed_simd`__ feature enabled, the `simba::simd` module will export several SIMD types like `f32x2`,
 `f64x4`, `i32i8`, `u16i16`, etc. There types are wrappers around the SIMD types from the [__packed_simd__
 crate](https://docs.rs/packed_simd). This requires a nightly compiler.
- With the __`wide`__ feature enabled, the `simba::simd` module will export the `WideF32x4` and `WideBoolF32x4`
  types. They types ure wrapper around the `wide::f32x4` type from the [__wide__ crate](https://docs.rs/wide).
  This will work with both a stable or nightly compiler.

If none of those features are enabled, __simba__ will still define all the scalar and SIMD traits.
However, the SIMD traits won't be implemented for any SIMD types. Therefore it is recommended to:
- Use the `packed_simd` feature if you want more features, and can afford to use a nightly compiler.
- Use the `wide` feature if you only need 4-lanes 32-bits floats, and can't afford to use a nightly compiler.
*/

#![deny(non_camel_case_types)]
#![deny(unused_parens)]
#![deny(non_upper_case_globals)]
#![deny(unused_results)]
#![deny(missing_docs)] // FIXME: should be denied
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
extern crate core as std;
extern crate num_traits as num;

#[macro_use]
pub mod scalar;
pub mod simd;