1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use crate::math::*;
use std::io::{Cursor};
use crate::error::{Result, UnitResult};
use smallvec::SmallVec;
use std::ops::Range;
use crate::block::{BlockIndex};
use crate::meta::attribute::ChannelList;
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
pub struct LineSlice<T> {
pub location: LineIndex,
pub value: T,
}
pub type LineRef<'s> = LineSlice<&'s [u8]>;
pub type LineRefMut<'s> = LineSlice<&'s mut [u8]>;
#[derive(Clone, Copy, Eq, PartialEq, Debug, Hash)]
pub struct LineIndex {
pub layer: usize,
pub channel: usize,
pub level: Vec2<usize>,
pub position: Vec2<usize>,
pub sample_count: usize,
}
impl LineIndex {
#[inline]
#[must_use]
pub fn lines_in_block(block: BlockIndex, channels: &ChannelList) -> impl Iterator<Item=(Range<usize>, LineIndex)> {
struct LineIter {
layer: usize, level: Vec2<usize>, width: usize,
end_y: usize, x: usize, channel_sizes: SmallVec<[usize; 8]>,
byte: usize, channel: usize, y: usize,
}
impl Iterator for LineIter {
type Item = (Range<usize>, LineIndex);
fn next(&mut self) -> Option<Self::Item> {
if self.y < self.end_y {
let byte_len = self.channel_sizes[self.channel];
let return_value = (
(self.byte .. self.byte + byte_len),
LineIndex {
channel: self.channel,
layer: self.layer,
level: self.level,
position: Vec2(self.x, self.y),
sample_count: self.width,
}
);
{ self.byte += byte_len;
self.channel += 1;
if self.channel == self.channel_sizes.len() {
self.channel = 0;
self.y += 1;
}
}
Some(return_value)
}
else {
None
}
}
}
let channel_line_sizes: SmallVec<[usize; 8]> = channels.list.iter()
.map(move |channel| block.pixel_size.0 * channel.sample_type.bytes_per_sample()) .collect();
LineIter {
layer: block.layer,
level: block.level,
width: block.pixel_size.0,
x: block.pixel_position.0,
end_y: block.pixel_position.y() + block.pixel_size.height(),
channel_sizes: channel_line_sizes,
byte: 0,
channel: 0,
y: block.pixel_position.y()
}
}
}
impl<'s> LineRefMut<'s> {
#[inline]
#[must_use]
pub fn write_samples_from_slice<T: crate::io::Data>(self, slice: &[T]) -> UnitResult {
debug_assert_eq!(slice.len(), self.location.sample_count, "slice size does not match the line width");
debug_assert_eq!(self.value.len(), self.location.sample_count * T::BYTE_SIZE, "sample type size does not match line byte size");
T::write_slice(&mut Cursor::new(self.value), slice)
}
#[inline]
#[must_use]
pub fn write_samples<T: crate::io::Data>(self, mut get_sample: impl FnMut(usize) -> T) -> UnitResult {
debug_assert_eq!(self.value.len(), self.location.sample_count * T::BYTE_SIZE, "sample type size does not match line byte size");
let mut write = Cursor::new(self.value);
for index in 0..self.location.sample_count {
T::write(get_sample(index), &mut write)?;
}
Ok(())
}
}
impl LineRef<'_> {
pub fn read_samples_into_slice<T: crate::io::Data>(self, slice: &mut [T]) -> UnitResult {
debug_assert_eq!(slice.len(), self.location.sample_count, "slice size does not match the line width");
debug_assert_eq!(self.value.len(), self.location.sample_count * T::BYTE_SIZE, "sample type size does not match line byte size");
T::read_slice(&mut Cursor::new(self.value), slice)
}
pub fn read_samples<T: crate::io::Data>(&self) -> impl Iterator<Item = Result<T>> + '_ {
debug_assert_eq!(self.value.len(), self.location.sample_count * T::BYTE_SIZE, "sample type size does not match line byte size");
let mut read = self.value.clone(); (0..self.location.sample_count).map(move |_| T::read(&mut read))
}
}