Struct nalgebra::linalg::Bidiagonal [−][src]
pub struct Bidiagonal<N: ComplexField, R: DimMin<C>, C: Dim> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>, { /* fields omitted */ }
Expand description
The bidiagonalization of a general matrix.
Implementations
impl<N: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
impl<N: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
Computes the Bidiagonal decomposition using householder reflections.
Indicates whether this decomposition contains an upper-diagonal matrix.
pub fn unpack(
self
) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixN<N, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>) where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>,
pub fn unpack(
self
) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixN<N, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>) where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>,
Unpacks this decomposition into its three matrix factors (U, D, V^t)
.
The decomposed matrix M
is equal to U * D * V^t
.
pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
Retrieves the upper trapezoidal submatrix R
of this decomposition.
pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
Computes the orthogonal matrix U
of this U * D * V
decomposition.
pub fn v_t(&self) -> MatrixMN<N, DimMinimum<R, C>, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
pub fn v_t(&self) -> MatrixMN<N, DimMinimum<R, C>, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
Computes the orthogonal matrix V_t
of this U * D * V_t
decomposition.
pub fn diagonal(&self) -> VectorN<N::RealField, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>>,
pub fn diagonal(&self) -> VectorN<N::RealField, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>>,
The diagonal part of this decomposed matrix.
pub fn off_diagonal(
&self
) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>> where
DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
pub fn off_diagonal(
&self
) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>> where
DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
The off-diagonal part of this decomposed matrix.
Trait Implementations
impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy,
Auto Trait Implementations
impl<N, R, C> !RefUnwindSafe for Bidiagonal<N, R, C>
impl<N, R, C> !Send for Bidiagonal<N, R, C>
impl<N, R, C> !Sync for Bidiagonal<N, R, C>
impl<N, R, C> !Unpin for Bidiagonal<N, R, C>
impl<N, R, C> !UnwindSafe for Bidiagonal<N, R, C>
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.