Struct nalgebra::geometry::Orthographic3 [−][src]
pub struct Orthographic3<N: RealField> { /* fields omitted */ }
Expand description
A 3D orthographic projection stored as a homogeneous 4x4 matrix.
Implementations
Creates a new orthographic projection matrix.
This follows the OpenGL convention, so this will flip the z
axis.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); // Check this projection actually transforms the view cuboid into the double-unit cube. // See https://www.nalgebra.org/projections/#orthographic-projection for more details. let p1 = Point3::new(1.0, 2.0, -0.1); let p2 = Point3::new(1.0, 2.0, -1000.0); let p3 = Point3::new(1.0, 20.0, -0.1); let p4 = Point3::new(1.0, 20.0, -1000.0); let p5 = Point3::new(10.0, 2.0, -0.1); let p6 = Point3::new(10.0, 2.0, -1000.0); let p7 = Point3::new(10.0, 20.0, -0.1); let p8 = Point3::new(10.0, 20.0, -1000.0); assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0)); // This also works with flipped axis. In other words, we allow that // `left > right`, `bottom > top`, and/or `znear > zfar`. let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.project_point(&p1), Point3::new( 1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new(-1.0, -1.0, -1.0));
Wraps the given matrix to interpret it as a 3D orthographic matrix.
It is not checked whether or not the given matrix actually represents an orthographic projection.
Example
let mat = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); let proj = Orthographic3::from_matrix_unchecked(mat); assert_eq!(proj, Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0));
Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
Retrieves the inverse of the underlying homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let inv = proj.inverse(); assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity()); assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity()); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); let inv = proj.inverse(); assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity()); assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
Computes the corresponding homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(proj.to_homogeneous(), expected);
A reference to the underlying homogeneous transformation matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(*proj.as_matrix(), expected);
A reference to this transformation seen as a Projective3
.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_eq!(proj.as_projective().to_homogeneous(), proj.to_homogeneous());
This transformation seen as a Projective3
.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_eq!(proj.to_projective().to_homogeneous(), proj.to_homogeneous());
Retrieves the underlying homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(proj.into_inner(), expected);
👎 Deprecated: use .into_inner()
instead
use .into_inner()
instead
Retrieves the underlying homogeneous matrix. Deprecated: Use Orthographic3::into_inner instead.
The left offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.left(), 1.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.left(), 10.0, epsilon = 1.0e-6);
The right offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.right(), 10.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.right(), 1.0, epsilon = 1.0e-6);
The bottom offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.bottom(), 2.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.bottom(), 20.0, epsilon = 1.0e-6);
The top offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.top(), 20.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.top(), 2.0, epsilon = 1.0e-6);
The near plane offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.znear(), 0.1, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.znear(), 1000.0, epsilon = 1.0e-6);
The far plane offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.zfar(), 1000.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.zfar(), 0.1, epsilon = 1.0e-6);
Projects a point. Faster than matrix multiplication.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let p1 = Point3::new(1.0, 2.0, -0.1); let p2 = Point3::new(1.0, 2.0, -1000.0); let p3 = Point3::new(1.0, 20.0, -0.1); let p4 = Point3::new(1.0, 20.0, -1000.0); let p5 = Point3::new(10.0, 2.0, -0.1); let p6 = Point3::new(10.0, 2.0, -1000.0); let p7 = Point3::new(10.0, 20.0, -0.1); let p8 = Point3::new(10.0, 20.0, -1000.0); assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
Un-projects a point. Faster than multiplication by the underlying matrix inverse.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let p1 = Point3::new(-1.0, -1.0, -1.0); let p2 = Point3::new(-1.0, -1.0, 1.0); let p3 = Point3::new(-1.0, 1.0, -1.0); let p4 = Point3::new(-1.0, 1.0, 1.0); let p5 = Point3::new( 1.0, -1.0, -1.0); let p6 = Point3::new( 1.0, -1.0, 1.0); let p7 = Point3::new( 1.0, 1.0, -1.0); let p8 = Point3::new( 1.0, 1.0, 1.0); assert_relative_eq!(proj.unproject_point(&p1), Point3::new(1.0, 2.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p2), Point3::new(1.0, 2.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p3), Point3::new(1.0, 20.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p4), Point3::new(1.0, 20.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p5), Point3::new(10.0, 2.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p6), Point3::new(10.0, 2.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p7), Point3::new(10.0, 20.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p8), Point3::new(10.0, 20.0, -1000.0), epsilon = 1.0e-6);
Projects a vector. Faster than matrix multiplication.
Vectors are not affected by the translation part of the projection.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let v1 = Vector3::x(); let v2 = Vector3::y(); let v3 = Vector3::z(); assert_relative_eq!(proj.project_vector(&v1), Vector3::x() * 2.0 / 9.0); assert_relative_eq!(proj.project_vector(&v2), Vector3::y() * 2.0 / 18.0); assert_relative_eq!(proj.project_vector(&v3), Vector3::z() * -2.0 / 999.9);
Sets the left offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_left(2.0); assert_relative_eq!(proj.left(), 2.0, epsilon = 1.0e-6); // It is OK to set a left offset greater than the current right offset. proj.set_left(20.0); assert_relative_eq!(proj.left(), 20.0, epsilon = 1.0e-6);
Sets the right offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_right(15.0); assert_relative_eq!(proj.right(), 15.0, epsilon = 1.0e-6); // It is OK to set a right offset smaller than the current left offset. proj.set_right(-3.0); assert_relative_eq!(proj.right(), -3.0, epsilon = 1.0e-6);
Sets the bottom offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_bottom(8.0); assert_relative_eq!(proj.bottom(), 8.0, epsilon = 1.0e-6); // It is OK to set a bottom offset greater than the current top offset. proj.set_bottom(50.0); assert_relative_eq!(proj.bottom(), 50.0, epsilon = 1.0e-6);
Sets the top offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_top(15.0); assert_relative_eq!(proj.top(), 15.0, epsilon = 1.0e-6); // It is OK to set a top offset smaller than the current bottom offset. proj.set_top(-3.0); assert_relative_eq!(proj.top(), -3.0, epsilon = 1.0e-6);
Sets the near plane offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_znear(8.0); assert_relative_eq!(proj.znear(), 8.0, epsilon = 1.0e-6); // It is OK to set a znear greater than the current zfar. proj.set_znear(5000.0); assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
Sets the far plane offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_zfar(15.0); assert_relative_eq!(proj.zfar(), 15.0, epsilon = 1.0e-6); // It is OK to set a zfar smaller than the current znear. proj.set_zfar(-3.0); assert_relative_eq!(proj.zfar(), -3.0, epsilon = 1.0e-6);
Sets the view cuboid offsets along the x
axis.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_left_and_right(7.0, 70.0); assert_relative_eq!(proj.left(), 7.0, epsilon = 1.0e-6); assert_relative_eq!(proj.right(), 70.0, epsilon = 1.0e-6); // It is also OK to have `left > right`. proj.set_left_and_right(70.0, 7.0); assert_relative_eq!(proj.left(), 70.0, epsilon = 1.0e-6); assert_relative_eq!(proj.right(), 7.0, epsilon = 1.0e-6);
Sets the view cuboid offsets along the y
axis.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_bottom_and_top(7.0, 70.0); assert_relative_eq!(proj.bottom(), 7.0, epsilon = 1.0e-6); assert_relative_eq!(proj.top(), 70.0, epsilon = 1.0e-6); // It is also OK to have `bottom > top`. proj.set_bottom_and_top(70.0, 7.0); assert_relative_eq!(proj.bottom(), 70.0, epsilon = 1.0e-6); assert_relative_eq!(proj.top(), 7.0, epsilon = 1.0e-6);
Sets the near and far plane offsets of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_znear_and_zfar(50.0, 5000.0); assert_relative_eq!(proj.znear(), 50.0, epsilon = 1.0e-6); assert_relative_eq!(proj.zfar(), 5000.0, epsilon = 1.0e-6); // It is also OK to have `znear > zfar`. proj.set_znear_and_zfar(5000.0, 0.5); assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6); assert_relative_eq!(proj.zfar(), 0.5, epsilon = 1.0e-6);
Trait Implementations
Performs the conversion.
Auto Trait Implementations
impl<N> RefUnwindSafe for Orthographic3<N> where
N: RefUnwindSafe,
impl<N> Send for Orthographic3<N>
impl<N> Sync for Orthographic3<N>
impl<N> Unpin for Orthographic3<N> where
N: Unpin,
impl<N> UnwindSafe for Orthographic3<N> where
N: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.