Type Definition nalgebra::geometry::UnitDualQuaternion [−][src]
pub type UnitDualQuaternion<N> = Unit<DualQuaternion<N>>;
Expand description
A unit quaternions. May be used to represent a rotation followed by a translation.
Implementations
The underlying dual quaternion.
Same as self.as_ref()
.
Example
let id = UnitDualQuaternion::identity(); assert_eq!(*id.dual_quaternion(), DualQuaternion::from_real_and_dual( Quaternion::new(1.0, 0.0, 0.0, 0.0), Quaternion::new(0.0, 0.0, 0.0, 0.0) ));
Compute the conjugate of this unit quaternion.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let unit = UnitDualQuaternion::new_normalize( DualQuaternion::from_real_and_dual(qr, qd) ); let conj = unit.conjugate(); assert_eq!(conj.real, unit.real.conjugate()); assert_eq!(conj.dual, unit.dual.conjugate());
Compute the conjugate of this unit quaternion in-place.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let unit = UnitDualQuaternion::new_normalize( DualQuaternion::from_real_and_dual(qr, qd) ); let mut conj = unit.clone(); conj.conjugate_mut(); assert_eq!(conj.as_ref().real, unit.as_ref().real.conjugate()); assert_eq!(conj.as_ref().dual, unit.as_ref().dual.conjugate());
Inverts this dual quaternion if it is not zero.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); let inv = unit.inverse(); assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
Inverts this dual quaternion in place if it is not zero.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); let mut inv = unit.clone(); inv.inverse_mut(); assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
The unit dual quaternion needed to make self
and other
coincide.
The result is such that: self.isometry_to(other) * self == other
.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qd, qr)); let dq_to = dq1.isometry_to(&dq2); assert_relative_eq!(dq_to * dq1, dq2, epsilon = 1.0e-6);
Linear interpolation between two unit dual quaternions.
The result is not normalized.
Example
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.5, 0.0), Quaternion::new(0.0, 0.5, 0.0, 0.5) )); let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.0, 0.5), Quaternion::new(0.5, 0.0, 0.5, 0.0) )); assert_relative_eq!( UnitDualQuaternion::new_normalize(dq1.lerp(&dq2, 0.5)), UnitDualQuaternion::new_normalize( DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.25, 0.25), Quaternion::new(0.25, 0.25, 0.25, 0.25) ) ), epsilon = 1.0e-6 );
Normalized linear interpolation between two unit quaternions.
This is the same as self.lerp
except that the result is normalized.
Example
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.5, 0.0), Quaternion::new(0.0, 0.5, 0.0, 0.5) )); let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.0, 0.5), Quaternion::new(0.5, 0.0, 0.5, 0.0) )); assert_relative_eq!(dq1.nlerp(&dq2, 0.2), UnitDualQuaternion::new_normalize( DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.4, 0.1), Quaternion::new(0.1, 0.4, 0.1, 0.4) ) ), epsilon = 1.0e-6);
Screw linear interpolation between two unit quaternions. This creates a smooth arc from one dual-quaternion to another.
Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
is not well-defined). Use .try_sclerp
instead to avoid the panic.
Example
let dq1 = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0), ); let dq2 = UnitDualQuaternion::from_parts( Vector3::new(0.0, 0.0, 3.0).into(), UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0), ); let dq = dq1.sclerp(&dq2, 1.0 / 3.0); assert_relative_eq!( dq.rotation().euler_angles().0, std::f32::consts::FRAC_PI_2, epsilon = 1.0e-6 ); assert_relative_eq!(dq.translation().vector.y, 3.0, epsilon = 1.0e-6);
Computes the screw-linear interpolation between two unit quaternions or returns None
if both quaternions are approximately 180 degrees apart (in which case the interpolation is
not well-defined).
Arguments
self
: the first quaternion to interpolate from.other
: the second quaternion to interpolate toward.t
: the interpolation parameter. Should be between 0 and 1.epsilon
: the value below which the sinus of the angle separating both quaternion must be to returnNone
.
Return the rotation part of this unit dual quaternion.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0) ); assert_relative_eq!( dq.rotation().angle(), std::f32::consts::FRAC_PI_4, epsilon = 1.0e-6 );
Return the translation part of this unit dual quaternion.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0) ); assert_relative_eq!( dq.translation().vector, Vector3::new(0.0, 3.0, 0.0), epsilon = 1.0e-6 );
Builds an isometry from this unit dual quaternion.
let rotation = UnitQuaternion::from_euler_angles(std::f32::consts::PI, 0.0, 0.0); let translation = Vector3::new(1.0, 3.0, 2.5); let dq = UnitDualQuaternion::from_parts( translation.into(), rotation ); let iso = dq.to_isometry(); assert_relative_eq!(iso.rotation.angle(), std::f32::consts::PI, epsilon = 1.0e-6); assert_relative_eq!(iso.translation.vector, translation, epsilon = 1.0e-6);
Rotate and translate a point by this unit dual quaternion interpreted as an isometry.
This is the same as the multiplication self * pt
.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let point = Point3::new(1.0, 2.0, 3.0); assert_relative_eq!( dq.transform_point(&point), Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6 );
Rotate a vector by this unit dual quaternion, ignoring the translational component.
This is the same as the multiplication self * v
.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let vector = Vector3::new(1.0, 2.0, 3.0); assert_relative_eq!( dq.transform_vector(&vector), Vector3::new(1.0, -3.0, 2.0), epsilon = 1.0e-6 );
Rotate and translate a point by the inverse of this unit quaternion.
This may be cheaper than inverting the unit dual quaternion and transforming the point.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let point = Point3::new(1.0, 2.0, 3.0); assert_relative_eq!( dq.inverse_transform_point(&point), Point3::new(1.0, 3.0, 1.0), epsilon = 1.0e-6 );
Rotate a vector by the inverse of this unit quaternion, ignoring the translational component.
This may be cheaper than inverting the unit dual quaternion and transforming the vector.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let vector = Vector3::new(1.0, 2.0, 3.0); assert_relative_eq!( dq.inverse_transform_vector(&vector), Vector3::new(1.0, 3.0, -2.0), epsilon = 1.0e-6 );
Rotate a unit vector by the inverse of this unit quaternion, ignoring the translational component. This may be cheaper than inverting the unit dual quaternion and transforming the vector.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let vector = Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0)); assert_relative_eq!( dq.inverse_transform_unit_vector(&vector), Unit::new_unchecked(Vector3::new(0.0, 0.0, -1.0)), epsilon = 1.0e-6 );
Converts this unit dual quaternion interpreted as an isometry into its equivalent homogeneous transformation matrix.
let dq = UnitDualQuaternion::from_parts( Vector3::new(1.0, 3.0, 2.0).into(), UnitQuaternion::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_6) ); let expected = Matrix4::new(0.8660254, -0.5, 0.0, 1.0, 0.5, 0.8660254, 0.0, 3.0, 0.0, 0.0, 1.0, 2.0, 0.0, 0.0, 0.0, 1.0); assert_relative_eq!(dq.to_homogeneous(), expected, epsilon = 1.0e-6);
The unit dual quaternion multiplicative identity, which also represents the identity transformation as an isometry.
let ident = UnitDualQuaternion::identity(); let point = Point3::new(1.0, -4.3, 3.33); assert_eq!(ident * point, point); assert_eq!(ident, ident.inverse());
pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To> where
UnitDualQuaternion<To>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To> where
UnitDualQuaternion<To>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let q = UnitDualQuaternion::<f64>::identity(); let q2 = q.cast::<f32>(); assert_eq!(q2, UnitDualQuaternion::<f32>::identity());
Return a dual quaternion representing the translation and orientation given by the provided rotation quaternion and translation vector.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let point = Point3::new(1.0, 2.0, 3.0); assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6);
Return a unit dual quaternion representing the translation and orientation given by the provided isometry.
let iso = Isometry3::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let dq = UnitDualQuaternion::from_isometry(&iso); let point = Point3::new(1.0, 2.0, 3.0); assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6);
Creates a dual quaternion from a unit quaternion rotation.
Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); let rot = UnitQuaternion::new_normalize(q); let dq = UnitDualQuaternion::from_rotation(rot); assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6); assert_eq!(dq.as_ref().dual.norm(), 0.0);
Trait Implementations
impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
type Epsilon = N
type Epsilon = N
Used for specifying relative comparisons.
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
impl<'a, 'b, N: SimdRealField> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'b, N: SimdRealField> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'a, 'b, N: SimdRealField> Div<&'b Translation<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Translation<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'b, N: SimdRealField> Div<&'b Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'a, N: SimdRealField> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<N: SimdRealField> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<N: SimdRealField> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'a, N: SimdRealField> Div<Translation<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'a, N: SimdRealField> Div<Translation<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<N: SimdRealField> Div<Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> DivAssign<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
Performs the /=
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> DivAssign<&'b Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> DivAssign<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> DivAssign<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> DivAssign<Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> DivAssign<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> DivAssign<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<N: SimdRealField> From<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> From<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
impl<'a, 'b, N: SimdRealField> Mul<&'b DualQuaternion<N>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b DualQuaternion<N>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b DualQuaternion<N>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b DualQuaternion<N>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'b, N: SimdRealField> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'a, 'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Matrix<N, U3, U1, SB>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Matrix<N, U3, U1, SB>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Matrix<N, U3, U1, SB>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Matrix<N, U3, U1, SB>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Point<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Point<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Mul<&'b Point<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Mul<&'b Point<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Translation<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Translation<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'b, N: SimdRealField> Mul<&'b Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<DualQuaternion<N>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<DualQuaternion<N>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<DualQuaternion<N>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<DualQuaternion<N>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'a, N: SimdRealField> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<N: SimdRealField> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<N: SimdRealField> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'a, N: SimdRealField, SB: Storage<N, U3>> Mul<Matrix<N, U3, U1, SB>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField, SB: Storage<N, U3>> Mul<Matrix<N, U3, U1, SB>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField, SB: Storage<N, U3>> Mul<Matrix<N, U3, U1, SB>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField, SB: Storage<N, U3>> Mul<Matrix<N, U3, U1, SB>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Mul<Point<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Mul<Point<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> Mul<Point<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> Mul<Point<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Mul<Translation<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<'a, N: SimdRealField> Mul<Translation<N, U3>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
impl<N: SimdRealField> Mul<Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> MulAssign<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
Performs the *=
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> MulAssign<&'b Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> MulAssign<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> MulAssign<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> MulAssign<Translation<N, U3>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> MulAssign<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> MulAssign<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<N: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq
.
impl<N1, N2> SubsetOf<Isometry<N2, U3, Unit<Quaternion<N2>>>> for UnitDualQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Isometry<N2, U3, Unit<Quaternion<N2>>>> for UnitDualQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1: RealField, N2: RealField + SupersetOf<N1>> SubsetOf<Matrix<N2, U4, U4, <DefaultAllocator as Allocator<N2, U4, U4>>::Buffer>> for UnitDualQuaternion<N1>
impl<N1: RealField, N2: RealField + SupersetOf<N1>> SubsetOf<Matrix<N2, U4, U4, <DefaultAllocator as Allocator<N2, U4, U4>>::Buffer>> for UnitDualQuaternion<N1>
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Similarity<N2, U3, Unit<Quaternion<N2>>>> for UnitDualQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Similarity<N2, U3, Unit<Quaternion<N2>>>> for UnitDualQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2, C> SubsetOf<Transform<N2, U3, C>> for UnitDualQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
impl<N1, N2, C> SubsetOf<Transform<N2, U3, C>> for UnitDualQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for UnitDualQuaternion<N1> where
N1: SimdRealField,
N2: SimdRealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for UnitDualQuaternion<N1> where
N1: SimdRealField,
N2: SimdRealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.