Struct nalgebra::base::Unit [−][src]
#[repr(transparent)]pub struct Unit<T> { /* fields omitted */ }
Expand description
A wrapper that ensures the underlying algebraic entity has a unit norm.
It is likely that the only piece of documentation that you need in this page are:
- The construction with normalization
- Data extraction and construction without normalization
- Interpolation between two unit vectors
All the other impl blocks you will see in this page are about UnitComplex
and UnitQuaternion
; both built on top of Unit
. If you are interested
in their documentation, read their dedicated pages directly.
Implementations
Normalize the given vector and return it wrapped on a Unit
structure.
Attempts to normalize the given vector and return it wrapped on a Unit
structure.
Returns None
if the norm was smaller or equal to min_norm
.
Normalize the given vector and return it wrapped on a Unit
structure and its norm.
Normalize the given vector and return it wrapped on a Unit
structure and its norm.
Returns None
if the norm was smaller or equal to min_norm
.
Normalizes this vector again. This is useful when repeated computations might cause a drift in the norm because of float inaccuracies.
Returns the norm before re-normalization. See .renormalize_fast
for a faster alternative
that may be slightly less accurate if self
drifted significantly from having a unit length.
Normalizes this vector again using a first-order Taylor approximation. This is useful when repeated computations might cause a drift in the norm because of float inaccuracies.
Wraps the given value, assuming it is already normalized.
Wraps the given reference, assuming it is already normalized.
Retrieves the underlying value.
👎 Deprecated: use .into_inner()
instead
use .into_inner()
instead
Retrieves the underlying value. Deprecated: use Unit::into_inner instead.
Returns a mutable reference to the underlying value. This is _unchecked
because modifying
the underlying value in such a way that it no longer has unit length may lead to unexpected
results.
Computes the spherical linear interpolation between two unit vectors.
Examples:
let v1 = Unit::new_normalize(Vector2::new(1.0, 2.0)); let v2 = Unit::new_normalize(Vector2::new(2.0, -3.0)); let v = v1.slerp(&v2, 1.0); assert_eq!(v, v2);
Computes the spherical linear interpolation between two unit vectors.
Returns None
if the two vectors are almost collinear and with opposite direction
(in this case, there is an infinity of possible results).
The rotation angle in [0; pi] of this unit quaternion.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); assert_eq!(rot.angle(), 1.78);
The underlying quaternion.
Same as self.as_ref()
.
Example
let axis = UnitQuaternion::identity(); assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0));
Compute the conjugate of this unit quaternion.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); let conj = rot.conjugate(); assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78));
Inverts this quaternion if it is not zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); let inv = rot.inverse(); assert_eq!(rot * inv, UnitQuaternion::identity()); assert_eq!(inv * rot, UnitQuaternion::identity());
The rotation angle needed to make self
and other
coincide.
Example
let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0); let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1); assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
The unit quaternion needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
Example
let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0); let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1); let rot_to = rot1.rotation_to(&rot2); assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
Linear interpolation between two unit quaternions.
The result is not normalized.
Example
let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0)); let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0)); assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0));
Normalized linear interpolation between two unit quaternions.
This is the same as self.lerp
except that the result is normalized.
Example
let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0)); let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0)); assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0)));
Spherical linear interpolation between two unit quaternions.
Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
is not well-defined). Use .try_slerp
instead to avoid the panic.
Examples:
let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); let q = q1.slerp(&q2, 1.0 / 3.0); assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
Computes the spherical linear interpolation between two unit quaternions or returns None
if both quaternions are approximately 180 degrees apart (in which case the interpolation is
not well-defined).
Arguments
self
: the first quaternion to interpolate from.other
: the second quaternion to interpolate toward.t
: the interpolation parameter. Should be between 0 and 1.epsilon
: the value below which the sinus of the angle separating both quaternion must be to returnNone
.
Compute the conjugate of this unit quaternion in-place.
Inverts this quaternion if it is not zero.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3); let mut rot = UnitQuaternion::new(axisangle); rot.inverse_mut(); assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity()); assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity());
The rotation axis of this unit quaternion or None
if the rotation is zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = UnitQuaternion::from_axis_angle(&axis, angle); assert_eq!(rot.axis(), Some(axis)); // Case with a zero angle. let rot = UnitQuaternion::from_axis_angle(&axis, 0.0); assert!(rot.axis().is_none());
The rotation axis of this unit quaternion multiplied by the rotation angle.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3); let rot = UnitQuaternion::new(axisangle); assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
The rotation axis and angle in ]0, pi] of this unit quaternion.
Returns None
if the angle is zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = UnitQuaternion::from_axis_angle(&axis, angle); assert_eq!(rot.axis_angle(), Some((axis, angle))); // Case with a zero angle. let rot = UnitQuaternion::from_axis_angle(&axis, 0.0); assert!(rot.axis_angle().is_none());
Compute the exponential of a quaternion.
Note that this function yields a Quaternion<N>
because it loses the unit property.
Compute the natural logarithm of a quaternion.
Note that this function yields a Quaternion<N>
because it loses the unit property.
The vector part of the return value corresponds to the axis-angle representation (divided
by 2.0) of this unit quaternion.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3); let q = UnitQuaternion::new(axisangle); assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6);
Raise the quaternion to a given floating power.
This returns the unit quaternion that identifies a rotation with axis self.axis()
and
angle self.angle() × n
.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = UnitQuaternion::from_axis_angle(&axis, angle); let pow = rot.powf(2.0); assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6); assert_eq!(pow.angle(), 2.4);
Builds a rotation matrix from this unit quaternion.
Example
let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); let rot = q.to_rotation_matrix(); let expected = Matrix3::new(0.8660254, -0.5, 0.0, 0.5, 0.8660254, 0.0, 0.0, 0.0, 1.0); assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6);
👎 Deprecated: This is renamed to use .euler_angles()
.
This is renamed to use .euler_angles()
.
Converts this unit quaternion into its equivalent Euler angles.
The angles are produced in the form (roll, pitch, yaw).
Retrieves the euler angles corresponding to this unit quaternion.
The angles are produced in the form (roll, pitch, yaw).
Example
let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3); let euler = rot.euler_angles(); assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
Converts this unit quaternion into its equivalent homogeneous transformation matrix.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0, 0.5, 0.8660254, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0); assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6);
Rotate a point by this unit quaternion.
This is the same as the multiplication self * pt
.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
Rotate a vector by this unit quaternion.
This is the same as the multiplication self * v
.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
Rotate a point by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the point.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
Rotate a vector by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the vector.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
Rotate a vector by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the vector.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_2); let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis()); assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
Appends to self
a rotation given in the axis-angle form, using a linearized formulation.
This is faster, but approximate, way to compute UnitQuaternion::new(axisangle) * self
.
The rotation identity.
Example
let q = UnitQuaternion::identity(); let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0)); let v = Vector3::new_random(); let p = Point3::from(v); assert_eq!(q * q2, q2); assert_eq!(q2 * q, q2); assert_eq!(q * v, v); assert_eq!(q * p, p);
Cast the components of self
to another type.
Example
let q = UnitQuaternion::from_euler_angles(1.0f64, 2.0, 3.0); let q2 = q.cast::<f32>(); assert_relative_eq!(q2, UnitQuaternion::from_euler_angles(1.0f32, 2.0, 3.0), epsilon = 1.0e-6);
Creates a new quaternion from a unit vector (the rotation axis) and an angle (the rotation angle).
Example
let axis = Vector3::y_axis(); let angle = f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let q = UnitQuaternion::from_axis_angle(&axis, angle); assert_eq!(q.axis().unwrap(), axis); assert_eq!(q.angle(), angle); assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
Creates a new unit quaternion from a quaternion.
The input quaternion will be normalized.
Creates a new unit quaternion from Euler angles.
The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
Example
let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3); let euler = rot.euler_angles(); assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
Builds an unit quaternion from a basis assumed to be orthonormal.
In order to get a valid unit-quaternion, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.
Builds an unit quaternion from a rotation matrix.
Example
let axis = Vector3::y_axis(); let angle = 0.1; let rot = Rotation3::from_axis_angle(&axis, angle); let q = UnitQuaternion::from_rotation_matrix(&rot); assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6); assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6); assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6);
Builds an unit quaternion by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
pub fn from_matrix_eps(
m: &Matrix3<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self where
N: RealField,
pub fn from_matrix_eps(
m: &Matrix3<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self where
N: RealField,
Builds an unit quaternion by extracting the rotation part of the given transformation m
.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: an estimate of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toUnitQuaternion::identity()
if no other guesses come to mind.
The unit quaternion needed to make a
and b
be collinear and point toward the same
direction. Returns None
if both a
and b
are collinear and point to opposite directions, as then the
rotation desired is not unique.
Example
let a = Vector3::new(1.0, 2.0, 3.0); let b = Vector3::new(3.0, 1.0, 2.0); let q = UnitQuaternion::rotation_between(&a, &b).unwrap(); assert_relative_eq!(q * a, b); assert_relative_eq!(q.inverse() * b, a);
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Vector3::new(1.0, 2.0, 3.0); let b = Vector3::new(3.0, 1.0, 2.0); let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap(); let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap(); assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6); assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
The unit quaternion needed to make a
and b
be collinear and point toward the same
direction.
Example
let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0)); let q = UnitQuaternion::rotation_between(&a, &b).unwrap(); assert_relative_eq!(q * a, b); assert_relative_eq!(q.inverse() * b, a);
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0)); let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap(); let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap(); assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6); assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
Creates an unit quaternion that corresponds to the local frame of an observer standing at the
origin and looking toward dir
.
It maps the z
axis to the direction dir
.
Arguments
- dir - The look direction. It does not need to be normalized.
- up - The vertical direction. It does not need to be normalized.
The only requirement of this parameter is to not be collinear to
dir
. Non-collinearity is not checked.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let q = UnitQuaternion::face_towards(&dir, &up); assert_relative_eq!(q * Vector3::z(), dir.normalize());
pub fn new_observer_frames<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
👎 Deprecated: renamed to face_towards
pub fn new_observer_frames<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
renamed to face_towards
Deprecated: Use UnitQuaternion::face_towards instead.
Builds a right-handed look-at view matrix without translation.
It maps the view direction dir
to the negative z
axis.
This conforms to the common notion of right handed look-at matrix from the computer
graphics community.
Arguments
- dir − The view direction. It does not need to be normalized.
- up - A vector approximately aligned with required the vertical axis. It does not need
to be normalized. The only requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let q = UnitQuaternion::look_at_rh(&dir, &up); assert_relative_eq!(q * dir.normalize(), -Vector3::z());
Builds a left-handed look-at view matrix without translation.
It maps the view direction dir
to the positive z
axis.
This conforms to the common notion of left handed look-at matrix from the computer
graphics community.
Arguments
- dir − The view direction. It does not need to be normalized.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let q = UnitQuaternion::look_at_lh(&dir, &up); assert_relative_eq!(q * dir.normalize(), Vector3::z());
Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
If axisangle
has a magnitude smaller than N::default_epsilon()
, this returns the identity rotation.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let q = UnitQuaternion::new(axisangle); assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity());
Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
If axisangle
has a magnitude smaller than eps
, this returns the identity rotation.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let q = UnitQuaternion::new_eps(axisangle, 1.0e-6); assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // An almost zero vector yields an identity. assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
If axisangle
has a magnitude smaller than N::default_epsilon()
, this returns the identity rotation.
Same as Self::new(axisangle)
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let q = UnitQuaternion::from_scaled_axis(axisangle); assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
If axisangle
has a magnitude smaller than eps
, this returns the identity rotation.
Same as Self::new_eps(axisangle, eps)
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6); assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // An almost zero vector yields an identity. assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
Create the mean unit quaternion from a data structure implementing IntoIterator returning unit quaternions.
The method will panic if the iterator does not return any quaternions.
Algorithm from: Oshman, Yaakov, and Avishy Carmi. “Attitude estimation from vector observations using a genetic-algorithm-embedded quaternion particle filter.” Journal of Guidance, Control, and Dynamics 29.4 (2006): 879-891.
Example
let q1 = UnitQuaternion::from_euler_angles(0.0, 0.0, 0.0); let q2 = UnitQuaternion::from_euler_angles(-0.1, 0.0, 0.0); let q3 = UnitQuaternion::from_euler_angles(0.1, 0.0, 0.0); let quat_vec = vec![q1, q2, q3]; let q_mean = UnitQuaternion::mean_of(quat_vec); let euler_angles_mean = q_mean.euler_angles(); assert_relative_eq!(euler_angles_mean.0, 0.0, epsilon = 1.0e-7)
The underlying dual quaternion.
Same as self.as_ref()
.
Example
let id = UnitDualQuaternion::identity(); assert_eq!(*id.dual_quaternion(), DualQuaternion::from_real_and_dual( Quaternion::new(1.0, 0.0, 0.0, 0.0), Quaternion::new(0.0, 0.0, 0.0, 0.0) ));
Compute the conjugate of this unit quaternion.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let unit = UnitDualQuaternion::new_normalize( DualQuaternion::from_real_and_dual(qr, qd) ); let conj = unit.conjugate(); assert_eq!(conj.real, unit.real.conjugate()); assert_eq!(conj.dual, unit.dual.conjugate());
Compute the conjugate of this unit quaternion in-place.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let unit = UnitDualQuaternion::new_normalize( DualQuaternion::from_real_and_dual(qr, qd) ); let mut conj = unit.clone(); conj.conjugate_mut(); assert_eq!(conj.as_ref().real, unit.as_ref().real.conjugate()); assert_eq!(conj.as_ref().dual, unit.as_ref().dual.conjugate());
Inverts this dual quaternion if it is not zero.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); let inv = unit.inverse(); assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
Inverts this dual quaternion in place if it is not zero.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); let mut inv = unit.clone(); inv.inverse_mut(); assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
The unit dual quaternion needed to make self
and other
coincide.
The result is such that: self.isometry_to(other) * self == other
.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qd, qr)); let dq_to = dq1.isometry_to(&dq2); assert_relative_eq!(dq_to * dq1, dq2, epsilon = 1.0e-6);
Linear interpolation between two unit dual quaternions.
The result is not normalized.
Example
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.5, 0.0), Quaternion::new(0.0, 0.5, 0.0, 0.5) )); let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.0, 0.5), Quaternion::new(0.5, 0.0, 0.5, 0.0) )); assert_relative_eq!( UnitDualQuaternion::new_normalize(dq1.lerp(&dq2, 0.5)), UnitDualQuaternion::new_normalize( DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.25, 0.25), Quaternion::new(0.25, 0.25, 0.25, 0.25) ) ), epsilon = 1.0e-6 );
Normalized linear interpolation between two unit quaternions.
This is the same as self.lerp
except that the result is normalized.
Example
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.5, 0.0), Quaternion::new(0.0, 0.5, 0.0, 0.5) )); let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.0, 0.5), Quaternion::new(0.5, 0.0, 0.5, 0.0) )); assert_relative_eq!(dq1.nlerp(&dq2, 0.2), UnitDualQuaternion::new_normalize( DualQuaternion::from_real_and_dual( Quaternion::new(0.5, 0.0, 0.4, 0.1), Quaternion::new(0.1, 0.4, 0.1, 0.4) ) ), epsilon = 1.0e-6);
Screw linear interpolation between two unit quaternions. This creates a smooth arc from one dual-quaternion to another.
Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
is not well-defined). Use .try_sclerp
instead to avoid the panic.
Example
let dq1 = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0), ); let dq2 = UnitDualQuaternion::from_parts( Vector3::new(0.0, 0.0, 3.0).into(), UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0), ); let dq = dq1.sclerp(&dq2, 1.0 / 3.0); assert_relative_eq!( dq.rotation().euler_angles().0, std::f32::consts::FRAC_PI_2, epsilon = 1.0e-6 ); assert_relative_eq!(dq.translation().vector.y, 3.0, epsilon = 1.0e-6);
Computes the screw-linear interpolation between two unit quaternions or returns None
if both quaternions are approximately 180 degrees apart (in which case the interpolation is
not well-defined).
Arguments
self
: the first quaternion to interpolate from.other
: the second quaternion to interpolate toward.t
: the interpolation parameter. Should be between 0 and 1.epsilon
: the value below which the sinus of the angle separating both quaternion must be to returnNone
.
Return the rotation part of this unit dual quaternion.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0) ); assert_relative_eq!( dq.rotation().angle(), std::f32::consts::FRAC_PI_4, epsilon = 1.0e-6 );
Return the translation part of this unit dual quaternion.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0) ); assert_relative_eq!( dq.translation().vector, Vector3::new(0.0, 3.0, 0.0), epsilon = 1.0e-6 );
Builds an isometry from this unit dual quaternion.
let rotation = UnitQuaternion::from_euler_angles(std::f32::consts::PI, 0.0, 0.0); let translation = Vector3::new(1.0, 3.0, 2.5); let dq = UnitDualQuaternion::from_parts( translation.into(), rotation ); let iso = dq.to_isometry(); assert_relative_eq!(iso.rotation.angle(), std::f32::consts::PI, epsilon = 1.0e-6); assert_relative_eq!(iso.translation.vector, translation, epsilon = 1.0e-6);
Rotate and translate a point by this unit dual quaternion interpreted as an isometry.
This is the same as the multiplication self * pt
.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let point = Point3::new(1.0, 2.0, 3.0); assert_relative_eq!( dq.transform_point(&point), Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6 );
Rotate a vector by this unit dual quaternion, ignoring the translational component.
This is the same as the multiplication self * v
.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let vector = Vector3::new(1.0, 2.0, 3.0); assert_relative_eq!( dq.transform_vector(&vector), Vector3::new(1.0, -3.0, 2.0), epsilon = 1.0e-6 );
Rotate and translate a point by the inverse of this unit quaternion.
This may be cheaper than inverting the unit dual quaternion and transforming the point.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let point = Point3::new(1.0, 2.0, 3.0); assert_relative_eq!( dq.inverse_transform_point(&point), Point3::new(1.0, 3.0, 1.0), epsilon = 1.0e-6 );
Rotate a vector by the inverse of this unit quaternion, ignoring the translational component.
This may be cheaper than inverting the unit dual quaternion and transforming the vector.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let vector = Vector3::new(1.0, 2.0, 3.0); assert_relative_eq!( dq.inverse_transform_vector(&vector), Vector3::new(1.0, 3.0, -2.0), epsilon = 1.0e-6 );
Rotate a unit vector by the inverse of this unit quaternion, ignoring the translational component. This may be cheaper than inverting the unit dual quaternion and transforming the vector.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let vector = Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0)); assert_relative_eq!( dq.inverse_transform_unit_vector(&vector), Unit::new_unchecked(Vector3::new(0.0, 0.0, -1.0)), epsilon = 1.0e-6 );
Converts this unit dual quaternion interpreted as an isometry into its equivalent homogeneous transformation matrix.
let dq = UnitDualQuaternion::from_parts( Vector3::new(1.0, 3.0, 2.0).into(), UnitQuaternion::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_6) ); let expected = Matrix4::new(0.8660254, -0.5, 0.0, 1.0, 0.5, 0.8660254, 0.0, 3.0, 0.0, 0.0, 1.0, 2.0, 0.0, 0.0, 0.0, 1.0); assert_relative_eq!(dq.to_homogeneous(), expected, epsilon = 1.0e-6);
The unit dual quaternion multiplicative identity, which also represents the identity transformation as an isometry.
let ident = UnitDualQuaternion::identity(); let point = Point3::new(1.0, -4.3, 3.33); assert_eq!(ident * point, point); assert_eq!(ident, ident.inverse());
pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To> where
UnitDualQuaternion<To>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To> where
UnitDualQuaternion<To>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let q = UnitDualQuaternion::<f64>::identity(); let q2 = q.cast::<f32>(); assert_eq!(q2, UnitDualQuaternion::<f32>::identity());
Return a dual quaternion representing the translation and orientation given by the provided rotation quaternion and translation vector.
let dq = UnitDualQuaternion::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let point = Point3::new(1.0, 2.0, 3.0); assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6);
Return a unit dual quaternion representing the translation and orientation given by the provided isometry.
let iso = Isometry3::from_parts( Vector3::new(0.0, 3.0, 0.0).into(), UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) ); let dq = UnitDualQuaternion::from_isometry(&iso); let point = Point3::new(1.0, 2.0, 3.0); assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6);
Creates a dual quaternion from a unit quaternion rotation.
Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); let rot = UnitQuaternion::new_normalize(q); let dq = UnitDualQuaternion::from_rotation(rot); assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6); assert_eq!(dq.as_ref().dual.norm(), 0.0);
The rotation angle in ]-pi; pi]
of this unit complex number.
Example
let rot = UnitComplex::new(1.78); assert_eq!(rot.angle(), 1.78);
The sine of the rotation angle.
Example
let angle = 1.78f32; let rot = UnitComplex::new(angle); assert_eq!(rot.sin_angle(), angle.sin());
The cosine of the rotation angle.
Example
let angle = 1.78f32; let rot = UnitComplex::new(angle); assert_eq!(rot.cos_angle(),angle.cos());
The rotation angle returned as a 1-dimensional vector.
This is generally used in the context of generic programming. Using
the .angle()
method instead is more common.
The rotation axis and angle in ]0, pi] of this complex number.
This is generally used in the context of generic programming. Using
the .angle()
method instead is more common.
Returns None
if the angle is zero.
Compute the conjugate of this unit complex number.
Example
let rot = UnitComplex::new(1.78); let conj = rot.conjugate(); assert_eq!(rot.complex().im, -conj.complex().im); assert_eq!(rot.complex().re, conj.complex().re);
Inverts this complex number if it is not zero.
Example
let rot = UnitComplex::new(1.2); let inv = rot.inverse(); assert_relative_eq!(rot * inv, UnitComplex::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * rot, UnitComplex::identity(), epsilon = 1.0e-6);
Compute in-place the conjugate of this unit complex number.
Example
let angle = 1.7; let rot = UnitComplex::new(angle); let mut conj = UnitComplex::new(angle); conj.conjugate_mut(); assert_eq!(rot.complex().im, -conj.complex().im); assert_eq!(rot.complex().re, conj.complex().re);
Inverts in-place this unit complex number.
Example
let angle = 1.7; let mut rot = UnitComplex::new(angle); rot.inverse_mut(); assert_relative_eq!(rot * UnitComplex::new(angle), UnitComplex::identity()); assert_relative_eq!(UnitComplex::new(angle) * rot, UnitComplex::identity());
Builds the rotation matrix corresponding to this unit complex number.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_6); let expected = Rotation2::new(f32::consts::FRAC_PI_6); assert_eq!(rot.to_rotation_matrix(), expected);
Converts this unit complex number into its equivalent homogeneous transformation matrix.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_6); let expected = Matrix3::new(0.8660254, -0.5, 0.0, 0.5, 0.8660254, 0.0, 0.0, 0.0, 1.0); assert_eq!(rot.to_homogeneous(), expected);
Rotate the given point by this unit complex number.
This is the same as the multiplication self * pt
.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let transformed_point = rot.transform_point(&Point2::new(1.0, 2.0)); assert_relative_eq!(transformed_point, Point2::new(-2.0, 1.0), epsilon = 1.0e-6);
Rotate the given vector by this unit complex number.
This is the same as the multiplication self * v
.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let transformed_vector = rot.transform_vector(&Vector2::new(1.0, 2.0)); assert_relative_eq!(transformed_vector, Vector2::new(-2.0, 1.0), epsilon = 1.0e-6);
Rotate the given point by the inverse of this unit complex number.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let transformed_point = rot.inverse_transform_point(&Point2::new(1.0, 2.0)); assert_relative_eq!(transformed_point, Point2::new(2.0, -1.0), epsilon = 1.0e-6);
Rotate the given vector by the inverse of this unit complex number.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let transformed_vector = rot.inverse_transform_vector(&Vector2::new(1.0, 2.0)); assert_relative_eq!(transformed_vector, Vector2::new(2.0, -1.0), epsilon = 1.0e-6);
Rotate the given vector by the inverse of this unit complex number.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let transformed_vector = rot.inverse_transform_unit_vector(&Vector2::x_axis()); assert_relative_eq!(transformed_vector, -Vector2::y_axis(), epsilon = 1.0e-6);
Spherical linear interpolation between two rotations represented as unit complex numbers.
Examples:
let rot1 = UnitComplex::new(std::f32::consts::FRAC_PI_4); let rot2 = UnitComplex::new(-std::f32::consts::PI); let rot = rot1.slerp(&rot2, 1.0 / 3.0); assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
Builds the unit complex number corresponding to the rotation with the given angle.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2); assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
Builds the unit complex number corresponding to the rotation with the angle.
Same as Self::new(angle)
.
Example
let rot = UnitComplex::from_angle(f32::consts::FRAC_PI_2); assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
Builds the unit complex number from the sinus and cosinus of the rotation angle.
The input values are not checked to actually be cosines and sine of the same value.
Is is generally preferable to use the ::new(angle)
constructor instead.
Example
let angle = f32::consts::FRAC_PI_2; let rot = UnitComplex::from_cos_sin_unchecked(angle.cos(), angle.sin()); assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
Cast the components of self
to another type.
Example
let c = UnitComplex::new(1.0f64); let c2 = c.cast::<f32>(); assert_eq!(c2, UnitComplex::new(1.0f32));
The underlying complex number.
Same as self.as_ref()
.
Example
let angle = 1.78f32; let rot = UnitComplex::new(angle); assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin()));
Creates a new unit complex number from a complex number.
The input complex number will be normalized.
Creates a new unit complex number from a complex number.
The input complex number will be normalized. Returns the norm of the complex number as well.
Builds the unit complex number from the corresponding 2D rotation matrix.
Example
let rot = Rotation2::new(1.7); let complex = UnitComplex::from_rotation_matrix(&rot); assert_eq!(complex, UnitComplex::new(1.7));
Builds a rotation from a basis assumed to be orthonormal.
In order to get a valid unit-quaternion, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.
Builds an unit complex by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
pub fn from_matrix_eps(
m: &Matrix2<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self where
N: RealField,
pub fn from_matrix_eps(
m: &Matrix2<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self where
N: RealField,
Builds an unit complex by extracting the rotation part of the given transformation m
.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: an estimate of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toUnitQuaternion::identity()
if no other guesses come to mind.
The unit complex number needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
Example
let rot1 = UnitComplex::new(0.1); let rot2 = UnitComplex::new(1.7); let rot_to = rot1.rotation_to(&rot2); assert_relative_eq!(rot_to * rot1, rot2); assert_relative_eq!(rot_to.inverse() * rot2, rot1);
Raise this unit complex number to a given floating power.
This returns the unit complex number that identifies a rotation angle equal to
self.angle() × n
.
Example
let rot = UnitComplex::new(0.78); let pow = rot.powf(2.0); assert_relative_eq!(pow.angle(), 2.0 * 0.78);
The unit complex needed to make a
and b
be collinear and point toward the same
direction.
Example
let a = Vector2::new(1.0, 2.0); let b = Vector2::new(2.0, 1.0); let rot = UnitComplex::rotation_between(&a, &b); assert_relative_eq!(rot * a, b); assert_relative_eq!(rot.inverse() * b, a);
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Vector2::new(1.0, 2.0); let b = Vector2::new(2.0, 1.0); let rot2 = UnitComplex::scaled_rotation_between(&a, &b, 0.2); let rot5 = UnitComplex::scaled_rotation_between(&a, &b, 0.5); assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
The unit complex needed to make a
and b
be collinear and point toward the same
direction.
Example
let a = Unit::new_normalize(Vector2::new(1.0, 2.0)); let b = Unit::new_normalize(Vector2::new(2.0, 1.0)); let rot = UnitComplex::rotation_between_axis(&a, &b); assert_relative_eq!(rot * a, b); assert_relative_eq!(rot.inverse() * b, a);
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Unit::new_normalize(Vector2::new(1.0, 2.0)); let b = Unit::new_normalize(Vector2::new(2.0, 1.0)); let rot2 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.2); let rot5 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.5); assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
Trait Implementations
type Epsilon = N
type Epsilon = N
Used for specifying relative comparisons.
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
type Epsilon = N
type Epsilon = N
Used for specifying relative comparisons.
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq<Unit<Quaternion<N>>> for UnitQuaternion<N>
impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq<Unit<Quaternion<N>>> for UnitQuaternion<N>
type Epsilon = N
type Epsilon = N
Used for specifying relative comparisons.
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
impl<'a, 'b, N: SimdRealField> Div<&'a Unit<DualQuaternion<N>>> for &'b Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'a Unit<DualQuaternion<N>>> for &'b Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for &'a Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
type Output = Transform<N, U3, C::Representative>
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
type Output = Transform<N, U3, C::Representative>
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> Div<Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<N: SimdRealField> Div<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<N: SimdRealField> Div<Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<N: SimdRealField> Div<Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<DualQuaternion<N>>> for &'a Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
type Output = Transform<N, U3, C::Representative>
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
type Output = Transform<N, U3, C::Representative>
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
Performs the /=
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the /=
operation. Read more
impl<'b, N> DivAssign<&'b Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'b, N> DivAssign<&'b Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the /=
operation. Read more
impl<'b, N> DivAssign<&'b Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'b, N> DivAssign<&'b Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the /=
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> DivAssign<&'b Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> DivAssign<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<'b, N> DivAssign<&'b Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
impl<'b, N> DivAssign<&'b Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
Performs the /=
operation. Read more
impl<'b, N> DivAssign<&'b Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
impl<'b, N> DivAssign<&'b Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
Performs the /=
operation. Read more
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> DivAssign<Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<N: SimdRealField> DivAssign<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the /=
operation. Read more
impl<N> DivAssign<Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<N> DivAssign<Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the /=
operation. Read more
impl<N> DivAssign<Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<N> DivAssign<Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> DivAssign<Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> DivAssign<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> DivAssign<Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<N: SimdRealField> DivAssign<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> DivAssign<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the /=
operation. Read more
impl<N> DivAssign<Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
impl<N> DivAssign<Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
Performs the /=
operation. Read more
impl<N> DivAssign<Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
impl<N> DivAssign<Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
Performs the /=
operation. Read more
Performs the /=
operation. Read more
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[Unit<Matrix<<N as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<<N as SimdValue>::Element, R, C>>::Buffer>>; 16]> for Unit<MatrixMN<N, R, C>> where
N: From<[<N as SimdValue>::Element; 16]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[Unit<Matrix<<N as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<<N as SimdValue>::Element, R, C>>::Buffer>>; 16]> for Unit<MatrixMN<N, R, C>> where
N: From<[<N as SimdValue>::Element; 16]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[Unit<Matrix<<N as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<<N as SimdValue>::Element, R, C>>::Buffer>>; 2]> for Unit<MatrixMN<N, R, C>> where
N: From<[<N as SimdValue>::Element; 2]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[Unit<Matrix<<N as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<<N as SimdValue>::Element, R, C>>::Buffer>>; 2]> for Unit<MatrixMN<N, R, C>> where
N: From<[<N as SimdValue>::Element; 2]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[Unit<Matrix<<N as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<<N as SimdValue>::Element, R, C>>::Buffer>>; 4]> for Unit<MatrixMN<N, R, C>> where
N: From<[<N as SimdValue>::Element; 4]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[Unit<Matrix<<N as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<<N as SimdValue>::Element, R, C>>::Buffer>>; 4]> for Unit<MatrixMN<N, R, C>> where
N: From<[<N as SimdValue>::Element; 4]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[Unit<Matrix<<N as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<<N as SimdValue>::Element, R, C>>::Buffer>>; 8]> for Unit<MatrixMN<N, R, C>> where
N: From<[<N as SimdValue>::Element; 8]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[Unit<Matrix<<N as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<<N as SimdValue>::Element, R, C>>::Buffer>>; 8]> for Unit<MatrixMN<N, R, C>> where
N: From<[<N as SimdValue>::Element; 8]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
impl<N: SimdRealField> From<Unit<Complex<N>>> for Rotation2<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> From<Unit<Complex<N>>> for Rotation2<N> where
N::Element: SimdRealField,
Performs the conversion.
Performs the conversion.
Performs the conversion.
impl<N: SimdRealField + RealField> From<Unit<DualQuaternion<N>>> for Matrix4<N> where
N::Element: SimdRealField,
impl<N: SimdRealField + RealField> From<Unit<DualQuaternion<N>>> for Matrix4<N> where
N::Element: SimdRealField,
Performs the conversion.
impl<N: SimdRealField> From<Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> From<Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
Performs the conversion.
impl<N: SimdRealField> From<Unit<Quaternion<N>>> for Matrix4<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> From<Unit<Quaternion<N>>> for Matrix4<N> where
N::Element: SimdRealField,
Performs the conversion.
impl<N: SimdRealField> From<Unit<Quaternion<N>>> for Rotation3<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> From<Unit<Quaternion<N>>> for Rotation3<N> where
N::Element: SimdRealField,
Performs the conversion.
impl<N: SimdRealField> From<Unit<Quaternion<N>>> for Matrix3<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> From<Unit<Quaternion<N>>> for Matrix3<N> where
N::Element: SimdRealField,
Performs the conversion.
impl<'a, 'b, N: SimdRealField> Mul<&'a Unit<DualQuaternion<N>>> for &'b Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'a Unit<DualQuaternion<N>>> for &'b Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Translation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Translation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Translation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Translation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for &'a Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField, D: DimName, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
N::Element: SimdRealField,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
impl<'b, N: SimdRealField, D: DimName, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
N::Element: SimdRealField,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
impl<'a, 'b, N: SimdRealField, D: DimName, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
N::Element: SimdRealField,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
impl<'a, 'b, N: SimdRealField, D: DimName, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
N::Element: SimdRealField,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
impl<'b, N: SimdRealField, S: Storage<N, U2>> Mul<&'b Unit<Matrix<N, U2, U1, S>>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'b, N: SimdRealField, S: Storage<N, U2>> Mul<&'b Unit<Matrix<N, U2, U1, S>>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, 'b, N: SimdRealField, S: Storage<N, U2>> Mul<&'b Unit<Matrix<N, U2, U1, S>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, 'b, N: SimdRealField, S: Storage<N, U2>> Mul<&'b Unit<Matrix<N, U2, U1, S>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, 'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField, SB: Storage<N, U3>> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
type Output = Transform<N, U3, C::Representative>
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
type Output = Transform<N, U3, C::Representative>
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Translation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Translation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Translation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Translation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
type Output = UnitComplex<N>
type Output = UnitComplex<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Translation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Translation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Translation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Translation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Isometry<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Similarity<N, U2, UnitComplex<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = DualQuaternion<N>
type Output = DualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for Translation3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for &'a Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<DualQuaternion<N>>> for Isometry3<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U1> + Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField, D: DimName, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
N::Element: SimdRealField,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
impl<N: SimdRealField, D: DimName, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
N::Element: SimdRealField,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
impl<'a, N: SimdRealField, D: DimName, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
N::Element: SimdRealField,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
impl<'a, N: SimdRealField, D: DimName, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
N::Element: SimdRealField,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
impl<N: SimdRealField, S: Storage<N, U2>> Mul<Unit<Matrix<N, U2, U1, S>>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<N: SimdRealField, S: Storage<N, U2>> Mul<Unit<Matrix<N, U2, U1, S>>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, N: SimdRealField, S: Storage<N, U2>> Mul<Unit<Matrix<N, U2, U1, S>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, N: SimdRealField, S: Storage<N, U2>> Mul<Unit<Matrix<N, U2, U1, S>>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U1>,
impl<'a, N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField, SB: Storage<N, U3>> Mul<Unit<Matrix<N, U3, U1, SB>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Similarity<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
type Output = Transform<N, U3, C::Representative>
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
type Output = Transform<N, U3, C::Representative>
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
type Output = UnitQuaternion<N>
type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
type Output = UnitDualQuaternion<N>
type Output = UnitDualQuaternion<N>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Isometry<N, U3, UnitQuaternion<N>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Translation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Translation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Translation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Translation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
Performs the *=
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the *=
operation. Read more
impl<'b, N> MulAssign<&'b Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'b, N> MulAssign<&'b Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the *=
operation. Read more
impl<'b, N> MulAssign<&'b Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<'b, N> MulAssign<&'b Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the *=
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> MulAssign<&'b Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> MulAssign<&'b Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<'b, N> MulAssign<&'b Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
impl<'b, N> MulAssign<&'b Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
Performs the *=
operation. Read more
impl<'b, N> MulAssign<&'b Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
impl<'b, N> MulAssign<&'b Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
impl<N: SimdRealField> MulAssign<Unit<Complex<N>>> for UnitComplex<N> where
N::Element: SimdRealField,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<N: SimdRealField> MulAssign<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the *=
operation. Read more
impl<N> MulAssign<Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<N> MulAssign<Unit<Complex<N>>> for Isometry<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the *=
operation. Read more
impl<N> MulAssign<Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
impl<N> MulAssign<Unit<Complex<N>>> for Similarity<N, U2, UnitComplex<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> MulAssign<Unit<DualQuaternion<N>>> for DualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> MulAssign<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> MulAssign<Unit<Quaternion<N>>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<N: SimdRealField> MulAssign<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
impl<N: SimdRealField> MulAssign<Unit<Quaternion<N>>> for UnitDualQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1>,
Performs the *=
operation. Read more
impl<N> MulAssign<Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
impl<N> MulAssign<Unit<Quaternion<N>>> for Isometry<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
Performs the *=
operation. Read more
impl<N> MulAssign<Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
impl<N> MulAssign<Unit<Quaternion<N>>> for Similarity<N, U3, UnitQuaternion<N>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3>,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<N: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq
.
impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq
.
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq
.
impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq<Unit<Quaternion<N>>> for UnitQuaternion<N>
impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq<Unit<Quaternion<N>>> for UnitQuaternion<N>
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq
.
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<Complex<N2>>> for UnitComplex<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<Complex<N2>>> for UnitComplex<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for Rotation3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for Rotation3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for UnitQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for UnitQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for UnitDualQuaternion<N1> where
N1: SimdRealField,
N2: SimdRealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for UnitDualQuaternion<N1> where
N1: SimdRealField,
N2: SimdRealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for Translation3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for Translation3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for Isometry3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<DualQuaternion<N2>>> for Isometry3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<Quaternion<N2>>> for Rotation3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<Quaternion<N2>>> for Rotation3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<N1, N2> SubsetOf<Unit<Quaternion<N2>>> for UnitQuaternion<N1> where
N1: Scalar,
N2: Scalar + SupersetOf<N1>,
impl<N1, N2> SubsetOf<Unit<Quaternion<N2>>> for UnitQuaternion<N1> where
N1: Scalar,
N2: Scalar + SupersetOf<N1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.
impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq<Unit<DualQuaternion<N>>> for UnitDualQuaternion<N>
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.
Auto Trait Implementations
impl<T> RefUnwindSafe for Unit<T> where
T: RefUnwindSafe,
impl<T> UnwindSafe for Unit<T> where
T: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.