1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
use crate::{ Isometry3, Matrix4, Normed, Point3, Quaternion, Scalar, SimdRealField, Translation3, Unit, UnitQuaternion, Vector3, VectorN, Zero, U8, }; use approx::{AbsDiffEq, RelativeEq, UlpsEq}; #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; use std::fmt; use simba::scalar::{ClosedNeg, RealField}; /// A dual quaternion. /// /// # Indexing /// /// DualQuaternions are stored as \[..real, ..dual\]. /// Both of the quaternion components are laid out in `i, j, k, w` order. /// /// ``` /// # use nalgebra::{DualQuaternion, Quaternion}; /// /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// /// let dq = DualQuaternion::from_real_and_dual(real, dual); /// assert_eq!(dq[0], 2.0); /// assert_eq!(dq[1], 3.0); /// /// assert_eq!(dq[4], 6.0); /// assert_eq!(dq[7], 5.0); /// ``` /// /// NOTE: /// As of December 2020, dual quaternion support is a work in progress. /// If a feature that you need is missing, feel free to open an issue or a PR. /// See https://github.com/dimforge/nalgebra/issues/487 #[repr(C)] #[derive(Debug, Eq, PartialEq, Copy, Clone)] pub struct DualQuaternion<N: Scalar> { /// The real component of the quaternion pub real: Quaternion<N>, /// The dual component of the quaternion pub dual: Quaternion<N>, } impl<N: Scalar + Zero> Default for DualQuaternion<N> { fn default() -> Self { Self { real: Quaternion::default(), dual: Quaternion::default(), } } } impl<N: SimdRealField> DualQuaternion<N> where N::Element: SimdRealField, { /// Normalizes this quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{DualQuaternion, Quaternion}; /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let dq = DualQuaternion::from_real_and_dual(real, dual); /// /// let dq_normalized = dq.normalize(); /// /// relative_eq!(dq_normalized.real.norm(), 1.0); /// ``` #[inline] #[must_use = "Did you mean to use normalize_mut()?"] pub fn normalize(&self) -> Self { let real_norm = self.real.norm(); Self::from_real_and_dual(self.real / real_norm, self.dual / real_norm) } /// Normalizes this quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{DualQuaternion, Quaternion}; /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let mut dq = DualQuaternion::from_real_and_dual(real, dual); /// /// dq.normalize_mut(); /// /// relative_eq!(dq.real.norm(), 1.0); /// ``` #[inline] pub fn normalize_mut(&mut self) -> N { let real_norm = self.real.norm(); self.real /= real_norm; self.dual /= real_norm; real_norm } /// The conjugate of this dual quaternion, containing the conjugate of /// the real and imaginary parts.. /// /// # Example /// ``` /// # use nalgebra::{DualQuaternion, Quaternion}; /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let dq = DualQuaternion::from_real_and_dual(real, dual); /// /// let conj = dq.conjugate(); /// assert!(conj.real.i == -2.0 && conj.real.j == -3.0 && conj.real.k == -4.0); /// assert!(conj.real.w == 1.0); /// assert!(conj.dual.i == -6.0 && conj.dual.j == -7.0 && conj.dual.k == -8.0); /// assert!(conj.dual.w == 5.0); /// ``` #[inline] #[must_use = "Did you mean to use conjugate_mut()?"] pub fn conjugate(&self) -> Self { Self::from_real_and_dual(self.real.conjugate(), self.dual.conjugate()) } /// Replaces this quaternion by its conjugate. /// /// # Example /// ``` /// # use nalgebra::{DualQuaternion, Quaternion}; /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let mut dq = DualQuaternion::from_real_and_dual(real, dual); /// /// dq.conjugate_mut(); /// assert!(dq.real.i == -2.0 && dq.real.j == -3.0 && dq.real.k == -4.0); /// assert!(dq.real.w == 1.0); /// assert!(dq.dual.i == -6.0 && dq.dual.j == -7.0 && dq.dual.k == -8.0); /// assert!(dq.dual.w == 5.0); /// ``` #[inline] pub fn conjugate_mut(&mut self) { self.real.conjugate_mut(); self.dual.conjugate_mut(); } /// Inverts this dual quaternion if it is not zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{DualQuaternion, Quaternion}; /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let dq = DualQuaternion::from_real_and_dual(real, dual); /// let inverse = dq.try_inverse(); /// /// assert!(inverse.is_some()); /// assert_relative_eq!(inverse.unwrap() * dq, DualQuaternion::identity()); /// /// //Non-invertible case /// let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0); /// let dq = DualQuaternion::from_real_and_dual(zero, zero); /// let inverse = dq.try_inverse(); /// /// assert!(inverse.is_none()); /// ``` #[inline] #[must_use = "Did you mean to use try_inverse_mut()?"] pub fn try_inverse(&self) -> Option<Self> where N: RealField, { let mut res = *self; if res.try_inverse_mut() { Some(res) } else { None } } /// Inverts this dual quaternion in-place if it is not zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{DualQuaternion, Quaternion}; /// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let dq = DualQuaternion::from_real_and_dual(real, dual); /// let mut dq_inverse = dq; /// dq_inverse.try_inverse_mut(); /// /// assert_relative_eq!(dq_inverse * dq, DualQuaternion::identity()); /// /// //Non-invertible case /// let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0); /// let mut dq = DualQuaternion::from_real_and_dual(zero, zero); /// assert!(!dq.try_inverse_mut()); /// ``` #[inline] pub fn try_inverse_mut(&mut self) -> bool where N: RealField, { let inverted = self.real.try_inverse_mut(); if inverted { self.dual = -self.real * self.dual * self.real; true } else { false } } /// Linear interpolation between two dual quaternions. /// /// Computes `self * (1 - t) + other * t`. /// /// # Example /// ``` /// # use nalgebra::{DualQuaternion, Quaternion}; /// let dq1 = DualQuaternion::from_real_and_dual( /// Quaternion::new(1.0, 0.0, 0.0, 4.0), /// Quaternion::new(0.0, 2.0, 0.0, 0.0) /// ); /// let dq2 = DualQuaternion::from_real_and_dual( /// Quaternion::new(2.0, 0.0, 1.0, 0.0), /// Quaternion::new(0.0, 2.0, 0.0, 0.0) /// ); /// assert_eq!(dq1.lerp(&dq2, 0.25), DualQuaternion::from_real_and_dual( /// Quaternion::new(1.25, 0.0, 0.25, 3.0), /// Quaternion::new(0.0, 2.0, 0.0, 0.0) /// )); /// ``` #[inline] pub fn lerp(&self, other: &Self, t: N) -> Self { self * (N::one() - t) + other * t } } #[cfg(feature = "serde-serialize")] impl<N: SimdRealField> Serialize for DualQuaternion<N> where N: Serialize, { fn serialize<S>(&self, serializer: S) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where S: Serializer, { self.as_ref().serialize(serializer) } } #[cfg(feature = "serde-serialize")] impl<'a, N: SimdRealField> Deserialize<'a> for DualQuaternion<N> where N: Deserialize<'a>, { fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error> where Des: Deserializer<'a>, { type Dq<N> = [N; 8]; let dq: Dq<N> = Dq::<N>::deserialize(deserializer)?; Ok(Self { real: Quaternion::new(dq[3], dq[0], dq[1], dq[2]), dual: Quaternion::new(dq[7], dq[4], dq[5], dq[6]), }) } } impl<N: RealField> DualQuaternion<N> { fn to_vector(&self) -> VectorN<N, U8> { self.as_ref().clone().into() } } impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq for DualQuaternion<N> { type Epsilon = N; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.to_vector().abs_diff_eq(&other.to_vector(), epsilon) || // Account for the double-covering of S², i.e. q = -q self.to_vector().iter().zip(other.to_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-*b, epsilon)) } } impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq for DualQuaternion<N> { #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.to_vector().relative_eq(&other.to_vector(), epsilon, max_relative) || // Account for the double-covering of S², i.e. q = -q self.to_vector().iter().zip(other.to_vector().iter()).all(|(a, b)| a.relative_eq(&-*b, epsilon, max_relative)) } } impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq for DualQuaternion<N> { #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.to_vector().ulps_eq(&other.to_vector(), epsilon, max_ulps) || // Account for the double-covering of S², i.e. q = -q. self.to_vector().iter().zip(other.to_vector().iter()).all(|(a, b)| a.ulps_eq(&-*b, epsilon, max_ulps)) } } /// A unit quaternions. May be used to represent a rotation followed by a translation. pub type UnitDualQuaternion<N> = Unit<DualQuaternion<N>>; impl<N: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq for UnitDualQuaternion<N> { #[inline] fn eq(&self, rhs: &Self) -> bool { self.as_ref().eq(rhs.as_ref()) } } impl<N: Scalar + ClosedNeg + Eq + SimdRealField> Eq for UnitDualQuaternion<N> {} impl<N: SimdRealField> Normed for DualQuaternion<N> { type Norm = N::SimdRealField; #[inline] fn norm(&self) -> N::SimdRealField { self.real.norm() } #[inline] fn norm_squared(&self) -> N::SimdRealField { self.real.norm_squared() } #[inline] fn scale_mut(&mut self, n: Self::Norm) { self.real.scale_mut(n); self.dual.scale_mut(n); } #[inline] fn unscale_mut(&mut self, n: Self::Norm) { self.real.unscale_mut(n); self.dual.unscale_mut(n); } } impl<N: SimdRealField> UnitDualQuaternion<N> where N::Element: SimdRealField, { /// The underlying dual quaternion. /// /// Same as `self.as_ref()`. /// /// # Example /// ``` /// # use nalgebra::{DualQuaternion, UnitDualQuaternion, Quaternion}; /// let id = UnitDualQuaternion::identity(); /// assert_eq!(*id.dual_quaternion(), DualQuaternion::from_real_and_dual( /// Quaternion::new(1.0, 0.0, 0.0, 0.0), /// Quaternion::new(0.0, 0.0, 0.0, 0.0) /// )); /// ``` #[inline] pub fn dual_quaternion(&self) -> &DualQuaternion<N> { self.as_ref() } /// Compute the conjugate of this unit quaternion. /// /// # Example /// ``` /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion}; /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let unit = UnitDualQuaternion::new_normalize( /// DualQuaternion::from_real_and_dual(qr, qd) /// ); /// let conj = unit.conjugate(); /// assert_eq!(conj.real, unit.real.conjugate()); /// assert_eq!(conj.dual, unit.dual.conjugate()); /// ``` #[inline] #[must_use = "Did you mean to use conjugate_mut()?"] pub fn conjugate(&self) -> Self { Self::new_unchecked(self.as_ref().conjugate()) } /// Compute the conjugate of this unit quaternion in-place. /// /// # Example /// ``` /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion}; /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let unit = UnitDualQuaternion::new_normalize( /// DualQuaternion::from_real_and_dual(qr, qd) /// ); /// let mut conj = unit.clone(); /// conj.conjugate_mut(); /// assert_eq!(conj.as_ref().real, unit.as_ref().real.conjugate()); /// assert_eq!(conj.as_ref().dual, unit.as_ref().dual.conjugate()); /// ``` #[inline] pub fn conjugate_mut(&mut self) { self.as_mut_unchecked().conjugate_mut() } /// Inverts this dual quaternion if it is not zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, Quaternion, DualQuaternion}; /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); /// let inv = unit.inverse(); /// assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6); /// assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6); /// ``` #[inline] #[must_use = "Did you mean to use inverse_mut()?"] pub fn inverse(&self) -> Self { let real = Unit::new_unchecked(self.as_ref().real) .inverse() .into_inner(); let dual = -real * self.as_ref().dual * real; UnitDualQuaternion::new_unchecked(DualQuaternion { real, dual }) } /// Inverts this dual quaternion in place if it is not zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, Quaternion, DualQuaternion}; /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); /// let mut inv = unit.clone(); /// inv.inverse_mut(); /// assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6); /// assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6); /// ``` #[inline] #[must_use = "Did you mean to use inverse_mut()?"] pub fn inverse_mut(&mut self) { let quat = self.as_mut_unchecked(); quat.real = Unit::new_unchecked(quat.real).inverse().into_inner(); quat.dual = -quat.real * quat.dual * quat.real; } /// The unit dual quaternion needed to make `self` and `other` coincide. /// /// The result is such that: `self.isometry_to(other) * self == other`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion}; /// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd)); /// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qd, qr)); /// let dq_to = dq1.isometry_to(&dq2); /// assert_relative_eq!(dq_to * dq1, dq2, epsilon = 1.0e-6); /// ``` #[inline] pub fn isometry_to(&self, other: &Self) -> Self { other / self } /// Linear interpolation between two unit dual quaternions. /// /// The result is not normalized. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion}; /// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( /// Quaternion::new(0.5, 0.0, 0.5, 0.0), /// Quaternion::new(0.0, 0.5, 0.0, 0.5) /// )); /// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( /// Quaternion::new(0.5, 0.0, 0.0, 0.5), /// Quaternion::new(0.5, 0.0, 0.5, 0.0) /// )); /// assert_relative_eq!( /// UnitDualQuaternion::new_normalize(dq1.lerp(&dq2, 0.5)), /// UnitDualQuaternion::new_normalize( /// DualQuaternion::from_real_and_dual( /// Quaternion::new(0.5, 0.0, 0.25, 0.25), /// Quaternion::new(0.25, 0.25, 0.25, 0.25) /// ) /// ), /// epsilon = 1.0e-6 /// ); /// ``` #[inline] pub fn lerp(&self, other: &Self, t: N) -> DualQuaternion<N> { self.as_ref().lerp(other.as_ref(), t) } /// Normalized linear interpolation between two unit quaternions. /// /// This is the same as `self.lerp` except that the result is normalized. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion}; /// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( /// Quaternion::new(0.5, 0.0, 0.5, 0.0), /// Quaternion::new(0.0, 0.5, 0.0, 0.5) /// )); /// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual( /// Quaternion::new(0.5, 0.0, 0.0, 0.5), /// Quaternion::new(0.5, 0.0, 0.5, 0.0) /// )); /// assert_relative_eq!(dq1.nlerp(&dq2, 0.2), UnitDualQuaternion::new_normalize( /// DualQuaternion::from_real_and_dual( /// Quaternion::new(0.5, 0.0, 0.4, 0.1), /// Quaternion::new(0.1, 0.4, 0.1, 0.4) /// ) /// ), epsilon = 1.0e-6); /// ``` #[inline] pub fn nlerp(&self, other: &Self, t: N) -> Self { let mut res = self.lerp(other, t); let _ = res.normalize_mut(); Self::new_unchecked(res) } /// Screw linear interpolation between two unit quaternions. This creates a /// smooth arc from one dual-quaternion to another. /// /// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation /// is not well-defined). Use `.try_sclerp` instead to avoid the panic. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, DualQuaternion, UnitQuaternion, Vector3}; /// /// let dq1 = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0), /// ); /// /// let dq2 = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 0.0, 3.0).into(), /// UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0), /// ); /// /// let dq = dq1.sclerp(&dq2, 1.0 / 3.0); /// /// assert_relative_eq!( /// dq.rotation().euler_angles().0, std::f32::consts::FRAC_PI_2, epsilon = 1.0e-6 /// ); /// assert_relative_eq!(dq.translation().vector.y, 3.0, epsilon = 1.0e-6); #[inline] pub fn sclerp(&self, other: &Self, t: N) -> Self where N: RealField, { self.try_sclerp(other, t, N::default_epsilon()) .expect("DualQuaternion sclerp: ambiguous configuration.") } /// Computes the screw-linear interpolation between two unit quaternions or returns `None` /// if both quaternions are approximately 180 degrees apart (in which case the interpolation is /// not well-defined). /// /// # Arguments /// * `self`: the first quaternion to interpolate from. /// * `other`: the second quaternion to interpolate toward. /// * `t`: the interpolation parameter. Should be between 0 and 1. /// * `epsilon`: the value below which the sinus of the angle separating both quaternion /// must be to return `None`. #[inline] pub fn try_sclerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self> where N: RealField, { let two = N::one() + N::one(); let half = N::one() / two; // Invert one of the quaternions if we've got a longest-path // interpolation. let other = { let dot_product = self.as_ref().real.coords.dot(&other.as_ref().real.coords); if dot_product < N::zero() { -other.clone() } else { other.clone() } }; let difference = self.as_ref().conjugate() * other.as_ref(); let norm_squared = difference.real.vector().norm_squared(); if relative_eq!(norm_squared, N::zero(), epsilon = epsilon) { return None; } let inverse_norm_squared = N::one() / norm_squared; let inverse_norm = inverse_norm_squared.sqrt(); let mut angle = two * difference.real.scalar().acos(); let mut pitch = -two * difference.dual.scalar() * inverse_norm; let direction = difference.real.vector() * inverse_norm; let moment = (difference.dual.vector() - direction * (pitch * difference.real.scalar() * half)) * inverse_norm; angle *= t; pitch *= t; let sin = (half * angle).sin(); let cos = (half * angle).cos(); let real = Quaternion::from_parts(cos, direction * sin); let dual = Quaternion::from_parts( -pitch * half * sin, moment * sin + direction * (pitch * half * cos), ); Some( self * UnitDualQuaternion::new_unchecked(DualQuaternion::from_real_and_dual( real, dual, )), ) } /// Return the rotation part of this unit dual quaternion. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0) /// ); /// /// assert_relative_eq!( /// dq.rotation().angle(), std::f32::consts::FRAC_PI_4, epsilon = 1.0e-6 /// ); /// ``` #[inline] pub fn rotation(&self) -> UnitQuaternion<N> { Unit::new_unchecked(self.as_ref().real) } /// Return the translation part of this unit dual quaternion. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0) /// ); /// /// assert_relative_eq!( /// dq.translation().vector, Vector3::new(0.0, 3.0, 0.0), epsilon = 1.0e-6 /// ); /// ``` #[inline] pub fn translation(&self) -> Translation3<N> { let two = N::one() + N::one(); Translation3::from( ((self.as_ref().dual * self.as_ref().real.conjugate()) * two) .vector() .into_owned(), ) } /// Builds an isometry from this unit dual quaternion. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3}; /// let rotation = UnitQuaternion::from_euler_angles(std::f32::consts::PI, 0.0, 0.0); /// let translation = Vector3::new(1.0, 3.0, 2.5); /// let dq = UnitDualQuaternion::from_parts( /// translation.into(), /// rotation /// ); /// let iso = dq.to_isometry(); /// /// assert_relative_eq!(iso.rotation.angle(), std::f32::consts::PI, epsilon = 1.0e-6); /// assert_relative_eq!(iso.translation.vector, translation, epsilon = 1.0e-6); /// ``` #[inline] pub fn to_isometry(&self) -> Isometry3<N> { Isometry3::from_parts(self.translation(), self.rotation()) } /// Rotate and translate a point by this unit dual quaternion interpreted /// as an isometry. /// /// This is the same as the multiplication `self * pt`. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) /// ); /// let point = Point3::new(1.0, 2.0, 3.0); /// /// assert_relative_eq!( /// dq.transform_point(&point), Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6 /// ); /// ``` #[inline] pub fn transform_point(&self, pt: &Point3<N>) -> Point3<N> { self * pt } /// Rotate a vector by this unit dual quaternion, ignoring the translational /// component. /// /// This is the same as the multiplication `self * v`. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) /// ); /// let vector = Vector3::new(1.0, 2.0, 3.0); /// /// assert_relative_eq!( /// dq.transform_vector(&vector), Vector3::new(1.0, -3.0, 2.0), epsilon = 1.0e-6 /// ); /// ``` #[inline] pub fn transform_vector(&self, v: &Vector3<N>) -> Vector3<N> { self * v } /// Rotate and translate a point by the inverse of this unit quaternion. /// /// This may be cheaper than inverting the unit dual quaternion and /// transforming the point. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) /// ); /// let point = Point3::new(1.0, 2.0, 3.0); /// /// assert_relative_eq!( /// dq.inverse_transform_point(&point), Point3::new(1.0, 3.0, 1.0), epsilon = 1.0e-6 /// ); /// ``` #[inline] pub fn inverse_transform_point(&self, pt: &Point3<N>) -> Point3<N> { self.inverse() * pt } /// Rotate a vector by the inverse of this unit quaternion, ignoring the /// translational component. /// /// This may be cheaper than inverting the unit dual quaternion and /// transforming the vector. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) /// ); /// let vector = Vector3::new(1.0, 2.0, 3.0); /// /// assert_relative_eq!( /// dq.inverse_transform_vector(&vector), Vector3::new(1.0, 3.0, -2.0), epsilon = 1.0e-6 /// ); /// ``` #[inline] pub fn inverse_transform_vector(&self, v: &Vector3<N>) -> Vector3<N> { self.inverse() * v } /// Rotate a unit vector by the inverse of this unit quaternion, ignoring /// the translational component. This may be /// cheaper than inverting the unit dual quaternion and transforming the /// vector. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Unit, Vector3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) /// ); /// let vector = Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0)); /// /// assert_relative_eq!( /// dq.inverse_transform_unit_vector(&vector), /// Unit::new_unchecked(Vector3::new(0.0, 0.0, -1.0)), /// epsilon = 1.0e-6 /// ); /// ``` #[inline] pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector3<N>>) -> Unit<Vector3<N>> { self.inverse() * v } } impl<N: SimdRealField + RealField> UnitDualQuaternion<N> where N::Element: SimdRealField, { /// Converts this unit dual quaternion interpreted as an isometry /// into its equivalent homogeneous transformation matrix. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Matrix4, UnitDualQuaternion, UnitQuaternion, Vector3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(1.0, 3.0, 2.0).into(), /// UnitQuaternion::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_6) /// ); /// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 1.0, /// 0.5, 0.8660254, 0.0, 3.0, /// 0.0, 0.0, 1.0, 2.0, /// 0.0, 0.0, 0.0, 1.0); /// /// assert_relative_eq!(dq.to_homogeneous(), expected, epsilon = 1.0e-6); /// ``` #[inline] pub fn to_homogeneous(&self) -> Matrix4<N> { self.to_isometry().to_homogeneous() } } impl<N: RealField> Default for UnitDualQuaternion<N> { fn default() -> Self { Self::identity() } } impl<N: RealField + fmt::Display> fmt::Display for UnitDualQuaternion<N> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if let Some(axis) = self.rotation().axis() { let axis = axis.into_inner(); write!( f, "UnitDualQuaternion translation: {} − angle: {} − axis: ({}, {}, {})", self.translation().vector, self.rotation().angle(), axis[0], axis[1], axis[2] ) } else { write!( f, "UnitDualQuaternion translation: {} − angle: {} − axis: (undefined)", self.translation().vector, self.rotation().angle() ) } } } impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq for UnitDualQuaternion<N> { type Epsilon = N; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.as_ref().abs_diff_eq(other.as_ref(), epsilon) } } impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq for UnitDualQuaternion<N> { #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.as_ref() .relative_eq(other.as_ref(), epsilon, max_relative) } } impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq for UnitDualQuaternion<N> { #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps) } }