1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
#[cfg(feature = "arbitrary")] use crate::base::dimension::U4; #[cfg(feature = "arbitrary")] use crate::base::storage::Owned; #[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; #[cfg(feature = "rand-no-std")] use rand::{ distributions::{Distribution, OpenClosed01, Standard}, Rng, }; use num::{One, Zero}; use simba::scalar::{RealField, SupersetOf}; use simba::simd::SimdBool; use crate::base::dimension::U3; use crate::base::storage::Storage; use crate::base::{Matrix3, Matrix4, Unit, Vector, Vector3, Vector4}; use crate::{Scalar, SimdRealField}; use crate::geometry::{Quaternion, Rotation3, UnitQuaternion}; impl<N: Scalar> Quaternion<N> { /// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w` /// vector component. #[inline] #[deprecated(note = "Use `::from` instead.")] pub fn from_vector(vector: Vector4<N>) -> Self { Self { coords: vector } } /// Creates a new quaternion from its individual components. Note that the arguments order does /// **not** follow the storage order. /// /// The storage order is `[ i, j, k, w ]` while the arguments for this functions are in the /// order `(w, i, j, k)`. /// /// # Example /// ``` /// # use nalgebra::{Quaternion, Vector4}; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0); /// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0)); /// ``` #[inline] pub fn new(w: N, i: N, j: N, k: N) -> Self { Self::from(Vector4::new(i, j, k, w)) } /// Cast the components of `self` to another type. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0f64, 2.0, 3.0, 4.0); /// let q2 = q.cast::<f32>(); /// assert_eq!(q2, Quaternion::new(1.0f32, 2.0, 3.0, 4.0)); /// ``` pub fn cast<To: Scalar>(self) -> Quaternion<To> where To: SupersetOf<N>, { crate::convert(self) } } impl<N: SimdRealField> Quaternion<N> { /// Constructs a pure quaternion. #[inline] pub fn from_imag(vector: Vector3<N>) -> Self { Self::from_parts(N::zero(), vector) } /// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does /// **not** follow the storage order. /// /// The storage order is [ vector, scalar ]. /// /// # Example /// ``` /// # use nalgebra::{Quaternion, Vector3, Vector4}; /// let w = 1.0; /// let ijk = Vector3::new(2.0, 3.0, 4.0); /// let q = Quaternion::from_parts(w, ijk); /// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0); /// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0)); /// ``` #[inline] // TODO: take a reference to `vector`? pub fn from_parts<SB>(scalar: N, vector: Vector<N, U3, SB>) -> Self where SB: Storage<N, U3>, { Self::new(scalar, vector[0], vector[1], vector[2]) } /// Constructs a real quaternion. #[inline] pub fn from_real(r: N) -> Self { Self::from_parts(r, Vector3::zero()) } /// The quaternion multiplicative identity. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::identity(); /// let q2 = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// /// assert_eq!(q * q2, q2); /// assert_eq!(q2 * q, q2); /// ``` #[inline] pub fn identity() -> Self { Self::from_real(N::one()) } } // TODO: merge with the previous block. impl<N: SimdRealField> Quaternion<N> where N::Element: SimdRealField, { /// Creates a new quaternion from its polar decomposition. /// /// Note that `axis` is assumed to be a unit vector. // TODO: take a reference to `axis`? pub fn from_polar_decomposition<SB>(scale: N, theta: N, axis: Unit<Vector<N, U3, SB>>) -> Self where SB: Storage<N, U3>, { let rot = UnitQuaternion::<N>::from_axis_angle(&axis, theta * crate::convert(2.0f64)); rot.into_inner() * scale } } impl<N: SimdRealField> One for Quaternion<N> where N::Element: SimdRealField, { #[inline] fn one() -> Self { Self::identity() } } impl<N: SimdRealField> Zero for Quaternion<N> where N::Element: SimdRealField, { #[inline] fn zero() -> Self { Self::from(Vector4::zero()) } #[inline] fn is_zero(&self) -> bool { self.coords.is_zero() } } #[cfg(feature = "rand-no-std")] impl<N: SimdRealField> Distribution<Quaternion<N>> for Standard where Standard: Distribution<N>, { #[inline] fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> Quaternion<N> { Quaternion::new(rng.gen(), rng.gen(), rng.gen(), rng.gen()) } } #[cfg(feature = "arbitrary")] impl<N: SimdRealField + Arbitrary> Arbitrary for Quaternion<N> where Owned<N, U4>: Send, { #[inline] fn arbitrary(g: &mut Gen) -> Self { Self::new( N::arbitrary(g), N::arbitrary(g), N::arbitrary(g), N::arbitrary(g), ) } } impl<N: SimdRealField> UnitQuaternion<N> where N::Element: SimdRealField, { /// The rotation identity. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Vector3, Point3}; /// let q = UnitQuaternion::identity(); /// let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0)); /// let v = Vector3::new_random(); /// let p = Point3::from(v); /// /// assert_eq!(q * q2, q2); /// assert_eq!(q2 * q, q2); /// assert_eq!(q * v, v); /// assert_eq!(q * p, p); /// ``` #[inline] pub fn identity() -> Self { Self::new_unchecked(Quaternion::identity()) } /// Cast the components of `self` to another type. /// /// # Example /// ``` /// # use nalgebra::UnitQuaternion; /// # use approx::assert_relative_eq; /// let q = UnitQuaternion::from_euler_angles(1.0f64, 2.0, 3.0); /// let q2 = q.cast::<f32>(); /// assert_relative_eq!(q2, UnitQuaternion::from_euler_angles(1.0f32, 2.0, 3.0), epsilon = 1.0e-6); /// ``` pub fn cast<To: Scalar>(self) -> UnitQuaternion<To> where To: SupersetOf<N>, { crate::convert(self) } /// Creates a new quaternion from a unit vector (the rotation axis) and an angle /// (the rotation angle). /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axis = Vector3::y_axis(); /// let angle = f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::from_axis_angle(&axis, angle); /// /// assert_eq!(q.axis().unwrap(), axis); /// assert_eq!(q.angle(), angle); /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity()); /// ``` #[inline] pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self where SB: Storage<N, U3>, { let (sang, cang) = (angle / crate::convert(2.0f64)).simd_sin_cos(); let q = Quaternion::from_parts(cang, axis.as_ref() * sang); Self::new_unchecked(q) } /// Creates a new unit quaternion from a quaternion. /// /// The input quaternion will be normalized. #[inline] pub fn from_quaternion(q: Quaternion<N>) -> Self { Self::new_normalize(q) } /// Creates a new unit quaternion from Euler angles. /// /// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::UnitQuaternion; /// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3); /// let euler = rot.euler_angles(); /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6); /// ``` #[inline] pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self { let (sr, cr) = (roll * crate::convert(0.5f64)).simd_sin_cos(); let (sp, cp) = (pitch * crate::convert(0.5f64)).simd_sin_cos(); let (sy, cy) = (yaw * crate::convert(0.5f64)).simd_sin_cos(); let q = Quaternion::new( cr * cp * cy + sr * sp * sy, sr * cp * cy - cr * sp * sy, cr * sp * cy + sr * cp * sy, cr * cp * sy - sr * sp * cy, ); Self::new_unchecked(q) } /// Builds an unit quaternion from a basis assumed to be orthonormal. /// /// In order to get a valid unit-quaternion, the input must be an /// orthonormal basis, i.e., all vectors are normalized, and the are /// all orthogonal to each other. These invariants are not checked /// by this method. pub fn from_basis_unchecked(basis: &[Vector3<N>; 3]) -> Self { let rot = Rotation3::from_basis_unchecked(basis); Self::from_rotation_matrix(&rot) } /// Builds an unit quaternion from a rotation matrix. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Rotation3, UnitQuaternion, Vector3}; /// let axis = Vector3::y_axis(); /// let angle = 0.1; /// let rot = Rotation3::from_axis_angle(&axis, angle); /// let q = UnitQuaternion::from_rotation_matrix(&rot); /// assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6); /// assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6); /// assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6); /// ``` #[inline] pub fn from_rotation_matrix(rotmat: &Rotation3<N>) -> Self { // Robust matrix to quaternion transformation. // See https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion let tr = rotmat[(0, 0)] + rotmat[(1, 1)] + rotmat[(2, 2)]; let quarter: N = crate::convert(0.25); let res = tr.simd_gt(N::zero()).if_else3( || { let denom = (tr + N::one()).simd_sqrt() * crate::convert(2.0); Quaternion::new( quarter * denom, (rotmat[(2, 1)] - rotmat[(1, 2)]) / denom, (rotmat[(0, 2)] - rotmat[(2, 0)]) / denom, (rotmat[(1, 0)] - rotmat[(0, 1)]) / denom, ) }, ( || rotmat[(0, 0)].simd_gt(rotmat[(1, 1)]) & rotmat[(0, 0)].simd_gt(rotmat[(2, 2)]), || { let denom = (N::one() + rotmat[(0, 0)] - rotmat[(1, 1)] - rotmat[(2, 2)]) .simd_sqrt() * crate::convert(2.0); Quaternion::new( (rotmat[(2, 1)] - rotmat[(1, 2)]) / denom, quarter * denom, (rotmat[(0, 1)] + rotmat[(1, 0)]) / denom, (rotmat[(0, 2)] + rotmat[(2, 0)]) / denom, ) }, ), ( || rotmat[(1, 1)].simd_gt(rotmat[(2, 2)]), || { let denom = (N::one() + rotmat[(1, 1)] - rotmat[(0, 0)] - rotmat[(2, 2)]) .simd_sqrt() * crate::convert(2.0); Quaternion::new( (rotmat[(0, 2)] - rotmat[(2, 0)]) / denom, (rotmat[(0, 1)] + rotmat[(1, 0)]) / denom, quarter * denom, (rotmat[(1, 2)] + rotmat[(2, 1)]) / denom, ) }, ), || { let denom = (N::one() + rotmat[(2, 2)] - rotmat[(0, 0)] - rotmat[(1, 1)]) .simd_sqrt() * crate::convert(2.0); Quaternion::new( (rotmat[(1, 0)] - rotmat[(0, 1)]) / denom, (rotmat[(0, 2)] + rotmat[(2, 0)]) / denom, (rotmat[(1, 2)] + rotmat[(2, 1)]) / denom, quarter * denom, ) }, ); Self::new_unchecked(res) } /// Builds an unit quaternion by extracting the rotation part of the given transformation `m`. /// /// This is an iterative method. See `.from_matrix_eps` to provide mover /// convergence parameters and starting solution. /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. pub fn from_matrix(m: &Matrix3<N>) -> Self where N: RealField, { Rotation3::from_matrix(m).into() } /// Builds an unit quaternion by extracting the rotation part of the given transformation `m`. /// /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. /// /// # Parameters /// /// * `m`: the matrix from which the rotational part is to be extracted. /// * `eps`: the angular errors tolerated between the current rotation and the optimal one. /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`. /// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close /// to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other /// guesses come to mind. pub fn from_matrix_eps(m: &Matrix3<N>, eps: N, max_iter: usize, guess: Self) -> Self where N: RealField, { let guess = Rotation3::from(guess); Rotation3::from_matrix_eps(m, eps, max_iter, guess).into() } /// The unit quaternion needed to make `a` and `b` be collinear and point toward the same /// direction. Returns `None` if both `a` and `b` are collinear and point to opposite directions, as then the /// rotation desired is not unique. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector3, UnitQuaternion}; /// let a = Vector3::new(1.0, 2.0, 3.0); /// let b = Vector3::new(3.0, 1.0, 2.0); /// let q = UnitQuaternion::rotation_between(&a, &b).unwrap(); /// assert_relative_eq!(q * a, b); /// assert_relative_eq!(q.inverse() * b, a); /// ``` #[inline] pub fn rotation_between<SB, SC>(a: &Vector<N, U3, SB>, b: &Vector<N, U3, SC>) -> Option<Self> where N: RealField, SB: Storage<N, U3>, SC: Storage<N, U3>, { Self::scaled_rotation_between(a, b, N::one()) } /// The smallest rotation needed to make `a` and `b` collinear and point toward the same /// direction, raised to the power `s`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector3, UnitQuaternion}; /// let a = Vector3::new(1.0, 2.0, 3.0); /// let b = Vector3::new(3.0, 1.0, 2.0); /// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap(); /// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap(); /// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_rotation_between<SB, SC>( a: &Vector<N, U3, SB>, b: &Vector<N, U3, SC>, s: N, ) -> Option<Self> where N: RealField, SB: Storage<N, U3>, SC: Storage<N, U3>, { // TODO: code duplication with Rotation. if let (Some(na), Some(nb)) = ( Unit::try_new(a.clone_owned(), N::zero()), Unit::try_new(b.clone_owned(), N::zero()), ) { Self::scaled_rotation_between_axis(&na, &nb, s) } else { Some(Self::identity()) } } /// The unit quaternion needed to make `a` and `b` be collinear and point toward the same /// direction. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Unit, Vector3, UnitQuaternion}; /// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0)); /// let q = UnitQuaternion::rotation_between(&a, &b).unwrap(); /// assert_relative_eq!(q * a, b); /// assert_relative_eq!(q.inverse() * b, a); /// ``` #[inline] pub fn rotation_between_axis<SB, SC>( a: &Unit<Vector<N, U3, SB>>, b: &Unit<Vector<N, U3, SC>>, ) -> Option<Self> where N: RealField, SB: Storage<N, U3>, SC: Storage<N, U3>, { Self::scaled_rotation_between_axis(a, b, N::one()) } /// The smallest rotation needed to make `a` and `b` collinear and point toward the same /// direction, raised to the power `s`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Unit, Vector3, UnitQuaternion}; /// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0)); /// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap(); /// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap(); /// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_rotation_between_axis<SB, SC>( na: &Unit<Vector<N, U3, SB>>, nb: &Unit<Vector<N, U3, SC>>, s: N, ) -> Option<Self> where N: RealField, SB: Storage<N, U3>, SC: Storage<N, U3>, { // TODO: code duplication with Rotation. let c = na.cross(&nb); if let Some(axis) = Unit::try_new(c, N::default_epsilon()) { let cos = na.dot(&nb); // The cosinus may be out of [-1, 1] because of inaccuracies. if cos <= -N::one() { None } else if cos >= N::one() { Some(Self::identity()) } else { Some(Self::from_axis_angle(&axis, cos.acos() * s)) } } else if na.dot(&nb) < N::zero() { // PI // // The rotation axis is undefined but the angle not zero. This is not a // simple rotation. None } else { // Zero Some(Self::identity()) } } /// Creates an unit quaternion that corresponds to the local frame of an observer standing at the /// origin and looking toward `dir`. /// /// It maps the `z` axis to the direction `dir`. /// /// # Arguments /// * dir - The look direction. It does not need to be normalized. /// * up - The vertical direction. It does not need to be normalized. /// The only requirement of this parameter is to not be collinear to `dir`. Non-collinearity /// is not checked. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let q = UnitQuaternion::face_towards(&dir, &up); /// assert_relative_eq!(q * Vector3::z(), dir.normalize()); /// ``` #[inline] pub fn face_towards<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self where SB: Storage<N, U3>, SC: Storage<N, U3>, { Self::from_rotation_matrix(&Rotation3::face_towards(dir, up)) } /// Deprecated: Use [UnitQuaternion::face_towards] instead. #[deprecated(note = "renamed to `face_towards`")] pub fn new_observer_frames<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self where SB: Storage<N, U3>, SC: Storage<N, U3>, { Self::face_towards(dir, up) } /// Builds a right-handed look-at view matrix without translation. /// /// It maps the view direction `dir` to the **negative** `z` axis. /// This conforms to the common notion of right handed look-at matrix from the computer /// graphics community. /// /// # Arguments /// * dir − The view direction. It does not need to be normalized. /// * up - A vector approximately aligned with required the vertical axis. It does not need /// to be normalized. The only requirement of this parameter is to not be collinear to `dir`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let q = UnitQuaternion::look_at_rh(&dir, &up); /// assert_relative_eq!(q * dir.normalize(), -Vector3::z()); /// ``` #[inline] pub fn look_at_rh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self where SB: Storage<N, U3>, SC: Storage<N, U3>, { Self::face_towards(&-dir, up).inverse() } /// Builds a left-handed look-at view matrix without translation. /// /// It maps the view direction `dir` to the **positive** `z` axis. /// This conforms to the common notion of left handed look-at matrix from the computer /// graphics community. /// /// # Arguments /// * dir − The view direction. It does not need to be normalized. /// * up - A vector approximately aligned with required the vertical axis. The only /// requirement of this parameter is to not be collinear to `dir`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let q = UnitQuaternion::look_at_lh(&dir, &up); /// assert_relative_eq!(q * dir.normalize(), Vector3::z()); /// ``` #[inline] pub fn look_at_lh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self where SB: Storage<N, U3>, SC: Storage<N, U3>, { Self::face_towards(dir, up).inverse() } /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle. /// /// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::new(axisangle); /// /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity()); /// ``` #[inline] pub fn new<SB>(axisangle: Vector<N, U3, SB>) -> Self where SB: Storage<N, U3>, { let two: N = crate::convert(2.0f64); let q = Quaternion::<N>::from_imag(axisangle / two).exp(); Self::new_unchecked(q) } /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle. /// /// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::new_eps(axisangle, 1.0e-6); /// /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // An almost zero vector yields an identity. /// assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity()); /// ``` #[inline] pub fn new_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self where SB: Storage<N, U3>, { let two: N = crate::convert(2.0f64); let q = Quaternion::<N>::from_imag(axisangle / two).exp_eps(eps); Self::new_unchecked(q) } /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle. /// /// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation. /// Same as `Self::new(axisangle)`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::from_scaled_axis(axisangle); /// /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity()); /// ``` #[inline] pub fn from_scaled_axis<SB>(axisangle: Vector<N, U3, SB>) -> Self where SB: Storage<N, U3>, { Self::new(axisangle) } /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle. /// /// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation. /// Same as `Self::new_eps(axisangle, eps)`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6); /// /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // An almost zero vector yields an identity. /// assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity()); /// ``` #[inline] pub fn from_scaled_axis_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self where SB: Storage<N, U3>, { Self::new_eps(axisangle, eps) } /// Create the mean unit quaternion from a data structure implementing IntoIterator /// returning unit quaternions. /// /// The method will panic if the iterator does not return any quaternions. /// /// Algorithm from: Oshman, Yaakov, and Avishy Carmi. "Attitude estimation from vector /// observations using a genetic-algorithm-embedded quaternion particle filter." Journal of /// Guidance, Control, and Dynamics 29.4 (2006): 879-891. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion}; /// let q1 = UnitQuaternion::from_euler_angles(0.0, 0.0, 0.0); /// let q2 = UnitQuaternion::from_euler_angles(-0.1, 0.0, 0.0); /// let q3 = UnitQuaternion::from_euler_angles(0.1, 0.0, 0.0); /// /// let quat_vec = vec![q1, q2, q3]; /// let q_mean = UnitQuaternion::mean_of(quat_vec); /// /// let euler_angles_mean = q_mean.euler_angles(); /// assert_relative_eq!(euler_angles_mean.0, 0.0, epsilon = 1.0e-7) /// ``` #[inline] pub fn mean_of(unit_quaternions: impl IntoIterator<Item = Self>) -> Self where N: RealField, { let quaternions_matrix: Matrix4<N> = unit_quaternions .into_iter() .map(|q| q.as_vector() * q.as_vector().transpose()) .sum(); assert!(!quaternions_matrix.is_zero()); let eigen_matrix = quaternions_matrix .try_symmetric_eigen(N::RealField::default_epsilon(), 10) .expect("Quaternions matrix could not be diagonalized. This behavior should not be possible."); let max_eigenvalue_index = eigen_matrix .eigenvalues .iter() .position(|v| *v == eigen_matrix.eigenvalues.max()) .unwrap(); let max_eigenvector = eigen_matrix.eigenvectors.column(max_eigenvalue_index); UnitQuaternion::from_quaternion(Quaternion::new( max_eigenvector[0], max_eigenvector[1], max_eigenvector[2], max_eigenvector[3], )) } } impl<N: SimdRealField> One for UnitQuaternion<N> where N::Element: SimdRealField, { #[inline] fn one() -> Self { Self::identity() } } #[cfg(feature = "rand-no-std")] impl<N: SimdRealField> Distribution<UnitQuaternion<N>> for Standard where N::Element: SimdRealField, OpenClosed01: Distribution<N>, { /// Generate a uniformly distributed random rotation quaternion. #[inline] fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> UnitQuaternion<N> { // Ken Shoemake's Subgroup Algorithm // Uniform random rotations. // In D. Kirk, editor, Graphics Gems III, pages 124-132. Academic, New York, 1992. let x0 = rng.sample(OpenClosed01); let x1 = rng.sample(OpenClosed01); let x2 = rng.sample(OpenClosed01); let theta1 = N::simd_two_pi() * x1; let theta2 = N::simd_two_pi() * x2; let s1 = theta1.simd_sin(); let c1 = theta1.simd_cos(); let s2 = theta2.simd_sin(); let c2 = theta2.simd_cos(); let r1 = (N::one() - x0).simd_sqrt(); let r2 = x0.simd_sqrt(); Unit::new_unchecked(Quaternion::new(s1 * r1, c1 * r1, s2 * r2, c2 * r2)) } } #[cfg(feature = "arbitrary")] impl<N: RealField + Arbitrary> Arbitrary for UnitQuaternion<N> where Owned<N, U4>: Send, Owned<N, U3>: Send, { #[inline] fn arbitrary(g: &mut Gen) -> Self { let axisangle = Vector3::arbitrary(g); Self::from_scaled_axis(axisangle) } } #[cfg(test)] mod tests { extern crate rand_xorshift; use super::*; use rand::SeedableRng; #[test] fn random_unit_quats_are_unit() { let mut rng = rand_xorshift::XorShiftRng::from_seed([0xAB; 16]); for _ in 0..1000 { let x = rng.gen::<UnitQuaternion<f32>>(); assert!(relative_eq!(x.into_inner().norm(), 1.0)) } } }