1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
use nalgebra as na; use crate::geometry::Rect; use super::OrthoCamera; impl OrthoCamera { /// Build a new camera with a given viewport height and aspect ratio. /// /// # Params /// /// - `viewport_height` defines the height of the view rectangle in world /// space. /// - `aspect_ratio` is the ratio of the desired viewport's `width/height`. pub fn with_viewport(viewport_height: f32, aspect_ratio: f32) -> Self { let viewport_width = viewport_height * aspect_ratio; Self { projection: Self::centered_ortho(viewport_width, viewport_height), view: na::Translation2::identity(), viewport_height, viewport_width, } } /// Get the camera's full transformation matrix. This can be passed to a /// shader for transformations. pub fn as_matrix(&self) -> na::Matrix4<f32> { let view_3d = na::Translation3::new(self.view.x, self.view.y, 0.0); self.projection.as_matrix() * view_3d.to_homogeneous() } /// The camera's bounds in world-space. /// /// # Example /// /// ```rust /// # use draw2d::camera::*; /// # use approx::assert_relative_eq; /// # use nalgebra as na; /// # /// let ortho = OrthoCamera::with_viewport(1.0, 2.0); /// let bounds = ortho.bounds(); /// /// assert_relative_eq!(bounds.left, -1.0); /// assert_relative_eq!(bounds.right, 1.0); /// assert_relative_eq!(bounds.top, 0.5); /// assert_relative_eq!(bounds.bottom, -0.5); /// ``` pub fn bounds(&self) -> Rect<f32> { let viewport_top_left = na::Point2::new( -self.viewport_width / 2.0, self.viewport_height / 2.0, ); let viewport_bottom_right = na::Point2::new( self.viewport_width / 2.0, -self.viewport_height / 2.0, ); let inverse = self.view.inverse(); let world_top_left = inverse.transform_point(&viewport_top_left); let world_bottom_right = inverse.transform_point(&viewport_bottom_right); Rect { left: world_top_left.x, right: world_bottom_right.x, top: world_top_left.y, bottom: world_bottom_right.y, } } /// Set the camera's position in world-space. /// /// # Example /// /// ```rust /// # use draw2d::camera::*; /// # use approx::assert_relative_eq; /// # use nalgebra as na; /// # /// let mut ortho = OrthoCamera::with_viewport(2.0, 1.0); /// ortho.set_world_position(&na::Point2::new(30.0, -0.5)); /// /// assert_relative_eq!( /// ortho.world_position(), /// na::Point2::new(30.0, -0.5) /// ); /// /// let bounds = ortho.bounds(); /// assert_relative_eq!(bounds.left, -1.0 + 30.0); /// assert_relative_eq!(bounds.right, 1.0 + 30.0); /// assert_relative_eq!(bounds.top, 1.0 - 0.5); /// assert_relative_eq!(bounds.bottom, -1.0 - 0.5); /// ``` pub fn set_world_position(&mut self, world_pos: &na::Point2<f32>) { self.view.x = -world_pos.x; self.view.y = -world_pos.y; } /// Get the camera's position in world space. /// /// /// # Example /// /// ```rust /// # use draw2d::camera::*; /// # use approx::assert_relative_eq; /// # use nalgebra as na; /// # /// let pos = OrthoCamera::with_viewport(1.0, 1.0).world_position(); /// /// assert_relative_eq!(pos, na::Point2::new(0.0, 0.0)); /// ``` pub fn world_position(&self) -> na::Point2<f32> { na::Point2::new(-self.view.x, -self.view.y) } /// Resize the viewport's width such that the viewing rectangle has the /// desired aspect ratio. /// /// # Example /// /// ```rust /// # use draw2d::camera::*; /// # use approx::assert_relative_eq; /// # use nalgebra as na; /// # /// let mut ortho = OrthoCamera::with_viewport(1.0, 1.0); /// ortho.set_aspect_ratio(2.0); /// /// let bounds = ortho.bounds(); /// assert_relative_eq!(bounds.left, -1.0); /// assert_relative_eq!(bounds.right, 1.0); /// assert_relative_eq!(bounds.top, 0.5); /// assert_relative_eq!(bounds.bottom, -0.5); /// ``` pub fn set_aspect_ratio(&mut self, desired_aspect_ratio: f32) { self.viewport_width = self.viewport_height * desired_aspect_ratio; self.projection = Self::centered_ortho(self.viewport_width, self.viewport_height); } /// The camera viewport's aspect ratio. pub fn aspect_ratio(&self) -> f32 { self.viewport_width / self.viewport_height } /// Get the height of the viewport. pub fn viewport_height(&self) -> f32 { self.viewport_height } /// Get the width of the viewport. pub fn viewport_width(&self) -> f32 { self.viewport_width } /// Set the viewport's height to a new value. /// /// Automatically resizes the viewport's width to maintain the current /// aspect ratio. /// /// # Example /// /// ```rust /// # use draw2d::camera::*; /// # use approx::assert_relative_eq; /// # use nalgebra as na; /// # /// // a camera which is 3x as wide as it is tall /// let mut ortho = OrthoCamera::with_viewport(2.0, 3.0); /// /// assert_relative_eq!(ortho.aspect_ratio(), 3.0); /// assert_relative_eq!(ortho.viewport_height(), 2.0); /// assert_relative_eq!(ortho.viewport_width(), 6.0); /// /// ortho.set_viewport_height(3.3); /// /// assert_relative_eq!(ortho.aspect_ratio(), 3.0); /// assert_relative_eq!(ortho.viewport_height(), 3.3); /// assert_relative_eq!(ortho.viewport_width(), 9.9); /// ``` pub fn set_viewport_height(&mut self, desired_height: f32) { let current_aspect_ratio = self.aspect_ratio(); self.viewport_height = desired_height; self.set_aspect_ratio(current_aspect_ratio); } /// Unproject a vector from normalized device coordinates (NDC) to view /// space. /// /// Vectors are just a direction and a magnitude, so this transformation /// does not apply the camera's translation in world space. /// /// # Example /// /// ```rust /// # use draw2d::camera::*; /// # use approx::assert_relative_eq; /// # use nalgebra as na; /// # /// // a camera which is 3x as wide as it is tall /// let mut ortho = OrthoCamera::with_viewport(2.0, 3.0); /// /// // the camera's world position is ignored when unprojecting a vector /// ortho.set_world_position(&na::Point2::new(100.0, -34523.0)); /// /// // Vulkan ndc coords have Y ranging from -1 at the top of the screen, /// // to 1 at the bottom of the screen. /// let top_right_ndc = na::Vector2::new(1.0, -1.0); /// /// // The unprojected vector should point to the top right of the viewport /// // rectangle, but is not influenced by the camera's world position. /// let unprojected = ortho.unproject_vec(&top_right_ndc); /// assert_relative_eq!(unprojected, na::Vector2::new(3.0, 1.0)); /// ``` pub fn unproject_vec(&self, ndc: &na::Vector2<f32>) -> na::Vector2<f32> { self.projection .inverse() .transform_vector(&na::Vector3::new(ndc.x, ndc.y, 0.0)) .xy() } /// Unproject a point from normalized device coordinates (NDC) to world /// space. /// /// Points are logically a specific location in space. As such, the point's /// coordinates will be transformed b ythe camera's location in world /// space. /// /// e.g. this method returns where the ndc point would *actually* be /// located in world coordinates. /// /// # Example /// /// ```rust /// # use draw2d::camera::*; /// # use approx::assert_relative_eq; /// # use nalgebra as na; /// # /// // a camera which is 3x as wide as it is tall /// let mut ortho = OrthoCamera::with_viewport(2.0, 3.0); /// /// // the camera's world position is ignored when unprojecting a vector /// ortho.set_world_position(&na::Point2::new(100.0, -34523.0)); /// /// // Vulkan ndc coords have Y ranging from -1 at the top of the screen, /// // to 1 at the bottom of the screen. /// let bottom_left_ndc = na::Point2::new(-1.0, 1.0); /// /// // The unprojected point should account for both the camera's viewing /// // rectangle, and the camera's world position. /// let unprojected = ortho.unproject_point(&bottom_left_ndc); /// assert_relative_eq!( /// unprojected, /// na::Point2::new(-3.0, -1.0) + ortho.world_position().coords /// ); /// ``` pub fn unproject_point(&self, ndc: &na::Point2<f32>) -> na::Point2<f32> { let unprojected = self.unproject_vec(&ndc.coords); self.view .inverse_transform_point(&na::Point2::from(unprojected)) } /// Construct an orthographic projection centered around the origin with /// the provided width and height. fn centered_ortho(width: f32, height: f32) -> na::Orthographic3<f32> { let half_width = width / 2.0; let half_height = height / 2.0; na::Orthographic3::new( -half_width, half_width, half_height, -half_height, 1.0, -1.0, ) } }