1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
//! Triple buffering in Rust //! //! In this crate, we propose a Rust implementation of triple buffering. This is //! a non-blocking thread synchronization mechanism that can be used when a //! single producer thread is frequently updating a shared data block, and a //! single consumer thread wants to be able to read the latest available version //! of the shared data whenever it feels like it. //! //! # Examples //! //! For many use cases, you can use the ergonomic write/read interface, where //! the producer moves values into the buffer and the consumer accesses the //! latest buffer by shared reference: //! //! ``` //! // Create a triple buffer //! use triple_buffer::TripleBuffer; //! let buf = TripleBuffer::new(0); //! //! // Split it into an input and output interface, to be respectively sent to //! // the producer thread and the consumer thread //! let (mut buf_input, mut buf_output) = buf.split(); //! //! // The producer can move a value into the buffer at any time //! buf_input.write(42); //! //! // The consumer can access the latest value from the producer at any time //! let latest_value_ref = buf_output.read(); //! assert_eq!(*latest_value_ref, 42); //! ``` //! //! In situations where moving the original value away and being unable to //! modify it on the consumer's side is too costly, such as if creating a new //! value involves dynamic memory allocation, you can use a lower-level API //! which allows you to access the producer and consumer's buffers in place //! and to precisely control when updates are propagated: //! //! ``` //! // Create and split a triple buffer //! use triple_buffer::TripleBuffer; //! let buf = TripleBuffer::new(String::with_capacity(42)); //! let (mut buf_input, mut buf_output) = buf.split(); //! //! // Mutate the input buffer in place //! { //! // Acquire a reference to the input buffer //! let input = buf_input.input_buffer(); //! //! // In general, you don't know what's inside of the buffer, so you should //! // always reset the value before use (this is a type-specific process). //! input.clear(); //! //! // Perform an in-place update //! input.push_str("Hello, "); //! } //! //! // Publish the above input buffer update //! buf_input.publish(); //! //! // Manually fetch the buffer update from the consumer interface //! buf_output.update(); //! //! // Acquire a mutable reference to the output buffer //! let output = buf_output.output_buffer(); //! //! // Post-process the output value before use //! output.push_str("world!"); //! ``` #![deny(missing_debug_implementations, missing_docs)] use cache_padded::CachePadded; use std::{ cell::UnsafeCell, sync::{ atomic::{AtomicU8, Ordering}, Arc, }, }; /// A triple buffer, useful for nonblocking and thread-safe data sharing /// /// A triple buffer is a single-producer single-consumer nonblocking /// communication channel which behaves like a shared variable: the producer /// submits regular updates, and the consumer accesses the latest available /// value whenever it feels like it. /// #[derive(Debug)] pub struct TripleBuffer<T: Send> { /// Input object used by producers to send updates input: Input<T>, /// Output object used by consumers to read the current value output: Output<T>, } // impl<T: Clone + Send> TripleBuffer<T> { /// Construct a triple buffer with a certain initial value // // FIXME: After spending some time thinking about this further, I reached // the conclusion that clippy was right after all. But since this is // a breaking change, I'm keeping that for the next major release. // #[allow(clippy::needless_pass_by_value)] pub fn new(initial: T) -> Self { Self::new_impl(|| initial.clone()) } } // impl<T: Default + Send> Default for TripleBuffer<T> { /// Construct a triple buffer with a default-constructed value fn default() -> Self { Self::new_impl(T::default) } } // impl<T: Send> TripleBuffer<T> { /// Construct a triple buffer, using a functor to generate initial values fn new_impl(mut generator: impl FnMut() -> T) -> Self { // Start with the shared state... let shared_state = Arc::new(SharedState::new(|_i| generator(), 0)); // ...then construct the input and output structs TripleBuffer { input: Input { shared: shared_state.clone(), input_idx: 1, }, output: Output { shared: shared_state, output_idx: 2, }, } } /// Extract input and output of the triple buffer // // NOTE: Although it would be nicer to directly return `Input` and `Output` // from `new()`, the `split()` design gives some API evolution // headroom towards future allocation-free modes of operation where // the SharedState is a static variable, or a stack-allocated variable // used through scoped threads or other unsafe thread synchronization. // // See https://github.com/HadrienG2/triple-buffer/issues/8 . // pub fn split(self) -> (Input<T>, Output<T>) { (self.input, self.output) } } // // The Clone and PartialEq traits are used internally for testing and I don't // want to commit to supporting them publicly for now. // #[doc(hidden)] impl<T: Clone + Send> Clone for TripleBuffer<T> { fn clone(&self) -> Self { // Clone the shared state. This is safe because at this layer of the // interface, one needs an Input/Output &mut to mutate the shared state. let shared_state = Arc::new(unsafe { (*self.input.shared).clone() }); // ...then the input and output structs TripleBuffer { input: Input { shared: shared_state.clone(), input_idx: self.input.input_idx, }, output: Output { shared: shared_state, output_idx: self.output.output_idx, }, } } } // #[doc(hidden)] impl<T: PartialEq + Send> PartialEq for TripleBuffer<T> { fn eq(&self, other: &Self) -> bool { // Compare the shared states. This is safe because at this layer of the // interface, one needs an Input/Output &mut to mutate the shared state. let shared_states_equal = unsafe { (*self.input.shared).eq(&*other.input.shared) }; // Compare the rest of the triple buffer states shared_states_equal && (self.input.input_idx == other.input.input_idx) && (self.output.output_idx == other.output.output_idx) } } /// Producer interface to the triple buffer /// /// The producer of data can use this struct to submit updates to the triple /// buffer whenever he likes. These updates are nonblocking: a collision between /// the producer and the consumer will result in cache contention, but deadlocks /// and scheduling-induced slowdowns cannot happen. /// #[derive(Debug)] pub struct Input<T: Send> { /// Reference-counted shared state shared: Arc<SharedState<T>>, /// Index of the input buffer (which is private to the producer) input_idx: BufferIndex, } // // Public interface impl<T: Send> Input<T> { /// Write a new value into the triple buffer pub fn write(&mut self, value: T) { // Update the input buffer *self.input_buffer() = value; // Publish our update to the consumer self.publish(); } /// Check if the consumer has fetched our last submission yet /// /// This method is only intended for diagnostics purposes. Please do not let /// it inform your decision of sending or not sending a value, as that would /// effectively be building a very poor spinlock-based double buffer /// implementation. If what you truly need is a double buffer, build /// yourself a proper blocking one instead of wasting CPU time. /// pub fn consumed(&self) -> bool { let back_info = self.shared.back_info.load(Ordering::Relaxed); back_info & BACK_DIRTY_BIT == 0 } /// Access the input buffer directly /// /// This advanced interface allows you to update the input buffer in place, /// so that you can avoid creating values of type T repeatedy just to push /// them into the triple buffer when doing so is expensive. /// /// However, by using it, you force yourself to take into account some /// implementation subtleties that you could normally ignore. /// /// First, the buffer does not contain the last value that you published /// (which is now available to the consumer thread). In fact, what you get /// may not match _any_ value that you sent in the past, but rather be a new /// value that was written in there by the consumer thread. All you can /// safely assume is that the buffer contains a valid value of type T, which /// you may need to "clean up" before use using a type-specific process. /// /// Second, we do not send updates automatically. You need to call /// `publish()` in order to propagate a buffer update to the consumer. /// Alternative designs based on Drop were considered, but considered too /// magical for the target audience of this interface. /// pub fn input_buffer(&mut self) -> &mut T { // This is safe because the synchronization protocol ensures that we // have exclusive access to this buffer. let input_ptr = self.shared.buffers[self.input_idx as usize].get(); unsafe { &mut *input_ptr } } /// Publish the current input buffer, checking for overwrites /// /// After updating the input buffer using `input_buffer()`, you can use this /// method to publish your updates to the consumer. /// /// This will replace the current input buffer with another one, as you /// cannot continue using the old one while the consumer is accessing it. /// /// It will also tell you whether you overwrote a value which was not read /// by the consumer thread. /// pub fn publish(&mut self) -> bool { // Swap the input buffer and the back buffer, setting the dirty bit // // The ordering must be AcqRel, because... // // - Our accesses to the old buffer must not be reordered after this // operation (which mandates Release ordering), otherwise they could // race with the consumer accessing the freshly published buffer. // - Our accesses from the buffer must not be reordered before this // operation (which mandates Consume ordering, that is best // approximated by Acquire in Rust), otherwise they would race with // the consumer accessing the buffer as well before switching to // another buffer. // * This reordering may seem paradoxical, but could happen if the // compiler or CPU correctly speculated the new buffer's index // before that index is actually read, as well as on weird hardware // with incoherent caches like GPUs or old DEC Alpha where keeping // data in sync across cores requires manual action. // let former_back_info = self .shared .back_info .swap(self.input_idx | BACK_DIRTY_BIT, Ordering::AcqRel); // The old back buffer becomes our new input buffer self.input_idx = former_back_info & BACK_INDEX_MASK; // Tell whether we have overwritten unread data former_back_info & BACK_DIRTY_BIT != 0 } /// Deprecated alias to `input_buffer()`, please use that method instead #[cfg(any(feature = "raw", test))] #[deprecated( since = "5.0.5", note = "The \"raw\" feature is deprecated as the performance \ optimization that motivated it turned out to be incorrect. \ All functionality is now available without using feature flags." )] pub fn raw_input_buffer(&mut self) -> &mut T { self.input_buffer() } /// Deprecated alias to `publish()`, please use that method instead #[cfg(any(feature = "raw", test))] #[deprecated( since = "5.0.5", note = "The \"raw\" feature is deprecated as the performance \ optimization that motivated it turned out to be incorrect. \ All functionality is now available without using feature flags." )] pub fn raw_publish(&mut self) -> bool { self.publish() } } /// Consumer interface to the triple buffer /// /// The consumer of data can use this struct to access the latest published /// update from the producer whenever he likes. Readout is nonblocking: a /// collision between the producer and consumer will result in cache contention, /// but deadlocks and scheduling-induced slowdowns cannot happen. /// #[derive(Debug)] pub struct Output<T: Send> { /// Reference-counted shared state shared: Arc<SharedState<T>>, /// Index of the output buffer (which is private to the consumer) output_idx: BufferIndex, } // // Public interface impl<T: Send> Output<T> { /// Access the latest value from the triple buffer pub fn read(&mut self) -> &T { // Fetch updates from the producer self.update(); // Give access to the output buffer self.output_buffer() } /// Tell whether a buffer update is incoming from the producer /// /// This method is only intended for diagnostics purposes. Please do not let /// it inform your decision of reading a value or not, as that would /// effectively be building a very poor spinlock-based double buffer /// implementation. If what you truly need is a double buffer, build /// yourself a proper blocking one instead of wasting CPU time. /// pub fn updated(&self) -> bool { let back_info = self.shared.back_info.load(Ordering::Relaxed); back_info & BACK_DIRTY_BIT != 0 } /// Access the output buffer directly /// /// This advanced interface allows you to modify the contents of the output /// buffer, so that you can avoid copying the output value when this is an /// expensive process. One possible application, for example, is to /// post-process values from the producer before use. /// /// However, by using it, you force yourself to take into account some /// implementation subtleties that you could normally ignore. /// /// First, keep in mind that you can lose access to the current output /// buffer any time `read()` or `update()` is called, as it may be replaced /// by an updated buffer from the producer automatically. /// /// Second, to reduce the potential for the aforementioned usage error, this /// method does not update the output buffer automatically. You need to call /// `update()` in order to fetch buffer updates from the producer. /// pub fn output_buffer(&mut self) -> &mut T { // This is safe because the synchronization protocol ensures that we // have exclusive access to this buffer. let output_ptr = self.shared.buffers[self.output_idx as usize].get(); unsafe { &mut *output_ptr } } /// Update the output buffer /// /// Check if the producer submitted a new data version, and if one is /// available, update our output buffer to use it. Return a flag that tells /// you whether such an update was carried out. /// /// Bear in mind that when this happens, you will lose any change that you /// performed to the output buffer via the `output_buffer()` interface. /// pub fn update(&mut self) -> bool { // Access the shared state let shared_state = &(*self.shared); // Check if an update is present in the back-buffer let updated = self.updated(); if updated { // If so, exchange our output buffer with the back-buffer, thusly // acquiring exclusive access to the old back buffer while giving // the producer a new back-buffer to write to. // // The ordering must be AcqRel, because... // // - Our accesses to the previous buffer must not be reordered after // this operation (which mandates Release ordering), otherwise // they could race with the producer accessing the freshly // liberated buffer. // - Our accesses from the buffer must not be reordered before this // operation (which mandates Consume ordering, that is best // approximated by Acquire in Rust), otherwise they would race // with the producer writing into the buffer before publishing it. // * This reordering may seem paradoxical, but could happen if the // compiler or CPU correctly speculated the new buffer's index // before that index is actually read, as well as on weird hardware // like GPUs where CPU caches require manual synchronization. // let former_back_info = shared_state .back_info .swap(self.output_idx, Ordering::AcqRel); // Make the old back-buffer our new output buffer self.output_idx = former_back_info & BACK_INDEX_MASK; } // Tell whether an update was carried out updated } /// Deprecated alias to `output_buffer()`, please use that method instead #[cfg(any(feature = "raw", test))] #[deprecated( since = "5.0.5", note = "The \"raw\" feature is deprecated as the performance \ optimization that motivated it turned out to be incorrect. \ All functionality is now available without using feature flags." )] pub fn raw_output_buffer(&mut self) -> &mut T { self.output_buffer() } /// Deprecated alias to `update()`, please use that method instead #[cfg(any(feature = "raw", test))] #[deprecated( since = "5.0.5", note = "The \"raw\" feature is deprecated as the performance \ optimization that motivated it turned out to be incorrect. \ All functionality is now available without using feature flags." )] #[cfg(any(feature = "raw", test))] pub fn raw_update(&mut self) -> bool { self.update() } } /// Triple buffer shared state /// /// In a triple buffering communication protocol, the producer and consumer /// share the following storage: /// /// - Three memory buffers suitable for storing the data at hand /// - Information about the back-buffer: which buffer is the current back-buffer /// and whether an update was published since the last readout. /// #[derive(Debug)] struct SharedState<T: Send> { /// Data storage buffers buffers: [CachePadded<UnsafeCell<T>>; 3], /// Information about the current back-buffer state back_info: CachePadded<AtomicBackBufferInfo>, } // #[doc(hidden)] impl<T: Send> SharedState<T> { /// Given (a way to generate) buffer contents and the back info, build the shared state fn new(mut gen_buf_data: impl FnMut(usize) -> T, back_info: BackBufferInfo) -> Self { let mut make_buf = |i| -> CachePadded<UnsafeCell<T>> { CachePadded::new(UnsafeCell::new(gen_buf_data(i))) }; Self { buffers: [make_buf(0), make_buf(1), make_buf(2)], back_info: CachePadded::new(AtomicBackBufferInfo::new(back_info)), } } } // #[doc(hidden)] impl<T: Clone + Send> SharedState<T> { /// Cloning the shared state is unsafe because you must ensure that no one /// is concurrently accessing it, since &self is enough for writing. unsafe fn clone(&self) -> Self { Self::new( |i| (*self.buffers[i].get()).clone(), self.back_info.load(Ordering::Relaxed), ) } } // #[doc(hidden)] impl<T: PartialEq + Send> SharedState<T> { /// Equality is unsafe for the same reason as cloning: you must ensure that /// no one is concurrently accessing the triple buffer to avoid data races. unsafe fn eq(&self, other: &Self) -> bool { // Check whether the contents of all buffers are equal... let buffers_equal = self .buffers .iter() .zip(other.buffers.iter()) .all(|tuple| -> bool { let (cell1, cell2) = tuple; *cell1.get() == *cell2.get() }); // ...then check whether the rest of the shared state is equal buffers_equal && (self.back_info.load(Ordering::Relaxed) == other.back_info.load(Ordering::Relaxed)) } } // unsafe impl<T: Send> Sync for SharedState<T> {} // Index types used for triple buffering // // These types are used to index into triple buffers. In addition, the // BackBufferInfo type is actually a bitfield, whose third bit (numerical // value: 4) is set to 1 to indicate that the producer published an update into // the back-buffer, and reset to 0 when the consumer fetches the update. // type BufferIndex = u8; type BackBufferInfo = BufferIndex; // type AtomicBackBufferInfo = AtomicU8; const BACK_INDEX_MASK: u8 = 0b11; // Mask used to extract back-buffer index const BACK_DIRTY_BIT: u8 = 0b100; // Bit set by producer to signal updates /// Unit tests #[cfg(test)] mod tests { use super::{BufferIndex, SharedState, TripleBuffer, BACK_DIRTY_BIT, BACK_INDEX_MASK}; use std::{fmt::Debug, ops::Deref, sync::atomic::Ordering, thread, time::Duration}; use testbench::{ self, race_cell::{RaceCell, Racey}, }; /// Check that triple buffers are properly initialized #[test] fn initial_state() { // Let's create a triple buffer let mut buf = TripleBuffer::new(42); check_buf_state(&mut buf, false); assert_eq!(*buf.output.read(), 42); } /// Check that the shared state's unsafe equality operator works #[test] fn partial_eq_shared() { // Let's create some dummy shared state let dummy_state = SharedState::<u16>::new(|i| [111, 222, 333][i], 0b10); // Check that the dummy state is equal to itself assert!(unsafe { dummy_state.eq(&dummy_state) }); // Check that it's not equal to a state where buffer contents differ assert!(unsafe { !dummy_state.eq(&SharedState::<u16>::new(|i| [114, 222, 333][i], 0b10)) }); assert!(unsafe { !dummy_state.eq(&SharedState::<u16>::new(|i| [111, 225, 333][i], 0b10)) }); assert!(unsafe { !dummy_state.eq(&SharedState::<u16>::new(|i| [111, 222, 336][i], 0b10)) }); // Check that it's not equal to a state where the back info differs assert!(unsafe { !dummy_state.eq(&SharedState::<u16>::new( |i| [111, 222, 333][i], BACK_DIRTY_BIT & 0b10, )) }); assert!(unsafe { !dummy_state.eq(&SharedState::<u16>::new(|i| [111, 222, 333][i], 0b01)) }); } /// Check that TripleBuffer's PartialEq impl works #[test] fn partial_eq() { // Create a triple buffer let buf = TripleBuffer::new("test"); // Check that it is equal to itself assert_eq!(buf, buf); // Make another buffer with different contents. As buffer creation is // deterministic, this should only have an impact on the shared state, // but the buffers should nevertheless be considered different. let buf2 = TripleBuffer::new("taste"); assert_eq!(buf.input.input_idx, buf2.input.input_idx); assert_eq!(buf.output.output_idx, buf2.output.output_idx); assert!(buf != buf2); // Check that changing either the input or output buffer index will // also lead two TripleBuffers to be considered different (this test // technically creates an invalid TripleBuffer state, but it's the only // way to check that the PartialEq impl is exhaustive) let mut buf3 = TripleBuffer::new("test"); assert_eq!(buf, buf3); let old_input_idx = buf3.input.input_idx; buf3.input.input_idx = buf3.output.output_idx; assert!(buf != buf3); buf3.input.input_idx = old_input_idx; buf3.output.output_idx = old_input_idx; assert!(buf != buf3); } /// Check that the shared state's unsafe clone operator works #[test] fn clone_shared() { // Let's create some dummy shared state let dummy_state = SharedState::<u8>::new(|i| [123, 231, 132][i], BACK_DIRTY_BIT & 0b01); // Now, try to clone it let dummy_state_copy = unsafe { dummy_state.clone() }; // Check that the contents of the original state did not change assert!(unsafe { dummy_state.eq(&SharedState::<u8>::new( |i| [123, 231, 132][i], BACK_DIRTY_BIT & 0b01, )) }); // Check that the contents of the original and final state are identical assert!(unsafe { dummy_state.eq(&dummy_state_copy) }); } /// Check that TripleBuffer's Clone impl works #[test] fn clone() { // Create a triple buffer let mut buf = TripleBuffer::new(4.2); // Put it in a nontrivial state unsafe { *buf.input.shared.buffers[0].get() = 1.2; *buf.input.shared.buffers[1].get() = 3.4; *buf.input.shared.buffers[2].get() = 5.6; } buf.input .shared .back_info .store(BACK_DIRTY_BIT & 0b01, Ordering::Relaxed); buf.input.input_idx = 0b10; buf.output.output_idx = 0b00; // Now clone it let buf_clone = buf.clone(); // Check that the clone uses its own, separate shared data storage assert_eq!( as_ptr(&buf_clone.output.shared), as_ptr(&buf_clone.output.shared) ); assert!(as_ptr(&buf_clone.input.shared) != as_ptr(&buf.input.shared)); // Check that it is identical from PartialEq's point of view assert_eq!(buf, buf_clone); // Check that the contents of the original buffer did not change unsafe { assert_eq!(*buf.input.shared.buffers[0].get(), 1.2); assert_eq!(*buf.input.shared.buffers[1].get(), 3.4); assert_eq!(*buf.input.shared.buffers[2].get(), 5.6); } assert_eq!( buf.input.shared.back_info.load(Ordering::Relaxed), BACK_DIRTY_BIT & 0b01 ); assert_eq!(buf.input.input_idx, 0b10); assert_eq!(buf.output.output_idx, 0b00); } /// Check that the low-level publish/update primitives work #[test] fn swaps() { // Create a new buffer, and a way to track any changes to it let mut buf = TripleBuffer::new([123, 456]); let old_buf = buf.clone(); let old_input_idx = old_buf.input.input_idx; let old_shared = &old_buf.input.shared; let old_back_info = old_shared.back_info.load(Ordering::Relaxed); let old_back_idx = old_back_info & BACK_INDEX_MASK; let old_output_idx = old_buf.output.output_idx; // Check that updating from a clean state works assert!(!buf.output.update()); assert_eq!(buf, old_buf); check_buf_state(&mut buf, false); // Check that publishing from a clean state works assert!(!buf.input.publish()); let mut expected_buf = old_buf.clone(); expected_buf.input.input_idx = old_back_idx; expected_buf .input .shared .back_info .store(old_input_idx | BACK_DIRTY_BIT, Ordering::Relaxed); assert_eq!(buf, expected_buf); check_buf_state(&mut buf, true); // Check that overwriting a dirty state works assert!(buf.input.publish()); let mut expected_buf = old_buf.clone(); expected_buf.input.input_idx = old_input_idx; expected_buf .input .shared .back_info .store(old_back_idx | BACK_DIRTY_BIT, Ordering::Relaxed); assert_eq!(buf, expected_buf); check_buf_state(&mut buf, true); // Check that updating from a dirty state works assert!(buf.output.update()); expected_buf.output.output_idx = old_back_idx; expected_buf .output .shared .back_info .store(old_output_idx, Ordering::Relaxed); assert_eq!(buf, expected_buf); check_buf_state(&mut buf, false); } /// Check that (sequentially) writing to a triple buffer works #[test] fn sequential_write() { // Let's create a triple buffer let mut buf = TripleBuffer::new(false); // Back up the initial buffer state let old_buf = buf.clone(); // Perform a write buf.input.write(true); // Check new implementation state { // Starting from the old buffer state... let mut expected_buf = old_buf.clone(); // ...write the new value in and swap... *expected_buf.input.input_buffer() = true; expected_buf.input.publish(); // Nothing else should have changed assert_eq!(buf, expected_buf); check_buf_state(&mut buf, true); } } /// Check that (sequentially) reading from a triple buffer works #[test] fn sequential_read() { // Let's create a triple buffer and write into it let mut buf = TripleBuffer::new(1.0); buf.input.write(4.2); // Test readout from dirty (freshly written) triple buffer { // Back up the initial buffer state let old_buf = buf.clone(); // Read from the buffer let result = *buf.output.read(); // Output value should be correct assert_eq!(result, 4.2); // Result should be equivalent to carrying out an update let mut expected_buf = old_buf.clone(); assert!(expected_buf.output.update()); assert_eq!(buf, expected_buf); check_buf_state(&mut buf, false); } // Test readout from clean (unchanged) triple buffer { // Back up the initial buffer state let old_buf = buf.clone(); // Read from the buffer let result = *buf.output.read(); // Output value should be correct assert_eq!(result, 4.2); // Buffer state should be unchanged assert_eq!(buf, old_buf); check_buf_state(&mut buf, false); } } /// Check that contended concurrent reads and writes work #[test] #[ignore] fn contended_concurrent_read_write() { // We will stress the infrastructure by performing this many writes // as a reader continuously reads the latest value const TEST_WRITE_COUNT: usize = 100_000_000; // This is the buffer that our reader and writer will share let buf = TripleBuffer::new(RaceCell::new(0)); let (mut buf_input, mut buf_output) = buf.split(); // Concurrently run a writer which increments a shared value in a loop, // and a reader which makes sure that no unexpected value slips in. let mut last_value = 0usize; testbench::concurrent_test_2( move || { for value in 1..=TEST_WRITE_COUNT { buf_input.write(RaceCell::new(value)); } }, move || { while last_value < TEST_WRITE_COUNT { let new_racey_value = buf_output.read().get(); match new_racey_value { Racey::Consistent(new_value) => { assert!((new_value >= last_value) && (new_value <= TEST_WRITE_COUNT)); last_value = new_value; } Racey::Inconsistent => { panic!("Inconsistent state exposed by the buffer!"); } } } }, ); } /// Check that uncontended concurrent reads and writes work /// /// **WARNING:** This test unfortunately needs to have timing-dependent /// behaviour to do its job. If it fails for you, try the following: /// /// - Close running applications in the background /// - Re-run the tests with only one OS thread (--test-threads=1) /// - Increase the writer sleep period /// #[test] #[ignore] fn uncontended_concurrent_read_write() { // We will stress the infrastructure by performing this many writes // as a reader continuously reads the latest value const TEST_WRITE_COUNT: usize = 625; // This is the buffer that our reader and writer will share let buf = TripleBuffer::new(RaceCell::new(0)); let (mut buf_input, mut buf_output) = buf.split(); // Concurrently run a writer which slowly increments a shared value, // and a reader which checks that it can receive every update let mut last_value = 0usize; testbench::concurrent_test_2( move || { for value in 1..=TEST_WRITE_COUNT { buf_input.write(RaceCell::new(value)); thread::yield_now(); thread::sleep(Duration::from_millis(32)); } }, move || { while last_value < TEST_WRITE_COUNT { let new_racey_value = buf_output.read().get(); match new_racey_value { Racey::Consistent(new_value) => { assert!((new_value >= last_value) && (new_value - last_value <= 1)); last_value = new_value; } Racey::Inconsistent => { panic!("Inconsistent state exposed by the buffer!"); } } } }, ); } /// Through the low-level API, the consumer is allowed to modify its /// bufffer, which means that it will unknowingly send back data to the /// producer. This creates new correctness requirements for the /// synchronization protocol, which must be checked as well. #[test] #[ignore] fn concurrent_bidirectional_exchange() { // We will stress the infrastructure by performing this many writes // as a reader continuously reads the latest value const TEST_WRITE_COUNT: usize = 100_000_000; // This is the buffer that our reader and writer will share let buf = TripleBuffer::new(RaceCell::new(0)); let (mut buf_input, mut buf_output) = buf.split(); // Concurrently run a writer which increments a shared value in a loop, // and a reader which makes sure that no unexpected value slips in. testbench::concurrent_test_2( move || { for new_value in 1..=TEST_WRITE_COUNT { match buf_input.input_buffer().get() { Racey::Consistent(curr_value) => { assert!(curr_value <= new_value); } Racey::Inconsistent => { panic!("Inconsistent state exposed by the buffer!"); } } buf_input.write(RaceCell::new(new_value)); } }, move || { let mut last_value = 0usize; while last_value < TEST_WRITE_COUNT { match buf_output.output_buffer().get() { Racey::Consistent(new_value) => { assert!((new_value >= last_value) && (new_value <= TEST_WRITE_COUNT)); last_value = new_value; } Racey::Inconsistent => { panic!("Inconsistent state exposed by the buffer!"); } } if buf_output.updated() { buf_output.output_buffer().set(last_value / 2); buf_output.update(); } } }, ); } /// Range check for triple buffer indexes #[allow(unused_comparisons)] fn index_in_range(idx: BufferIndex) -> bool { (idx >= 0) & (idx <= 2) } /// Get a pointer to the target of some reference (e.g. an &, an Arc...) fn as_ptr<P: Deref>(ref_like: &P) -> *const P::Target { &(**ref_like) as *const _ } /// Check the state of a buffer, and the effect of queries on it fn check_buf_state<T>(buf: &mut TripleBuffer<T>, expected_dirty_bit: bool) where T: Clone + Debug + PartialEq + Send, { // Make a backup of the buffer's initial state let initial_buf = buf.clone(); // Check that the input and output point to the same shared state assert_eq!(as_ptr(&buf.input.shared), as_ptr(&buf.output.shared)); // Access the shared state and decode back-buffer information let back_info = buf.input.shared.back_info.load(Ordering::Relaxed); let back_idx = back_info & BACK_INDEX_MASK; let back_buffer_dirty = back_info & BACK_DIRTY_BIT != 0; // Input-/output-/back-buffer indexes must be in range assert!(index_in_range(buf.input.input_idx)); assert!(index_in_range(buf.output.output_idx)); assert!(index_in_range(back_idx)); // Input-/output-/back-buffer indexes must be distinct assert!(buf.input.input_idx != buf.output.output_idx); assert!(buf.input.input_idx != back_idx); assert!(buf.output.output_idx != back_idx); // Back-buffer must have the expected dirty bit assert_eq!(back_buffer_dirty, expected_dirty_bit); // Check that the "input buffer" query behaves as expected assert_eq!( as_ptr(&buf.input.input_buffer()), buf.input.shared.buffers[buf.input.input_idx as usize].get() ); assert_eq!(*buf, initial_buf); // Check that the "consumed" query behaves as expected assert_eq!(!buf.input.consumed(), expected_dirty_bit); assert_eq!(*buf, initial_buf); // Check that the output_buffer query works in the initial state assert_eq!( as_ptr(&buf.output.output_buffer()), buf.output.shared.buffers[buf.output.output_idx as usize].get() ); assert_eq!(*buf, initial_buf); // Check that the output buffer query works in the initial state assert_eq!(buf.output.updated(), expected_dirty_bit); assert_eq!(*buf, initial_buf); } }