1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
#[cfg(feature = "arbitrary")] use crate::base::storage::Owned; #[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; use num::One; #[cfg(feature = "rand-no-std")] use rand::{ distributions::{Distribution, Standard}, Rng, }; use simba::scalar::SupersetOf; use simba::simd::SimdRealField; use crate::base::allocator::Allocator; use crate::base::dimension::{DimName, U2}; use crate::base::{DefaultAllocator, Vector2, Vector3}; use crate::{ AbstractRotation, Isometry, Isometry2, Isometry3, IsometryMatrix2, IsometryMatrix3, Point, Point3, Rotation, Rotation3, Scalar, Translation, Translation2, Translation3, UnitComplex, UnitQuaternion, }; impl<N: SimdRealField, D: DimName, R: AbstractRotation<N, D>> Isometry<N, D, R> where N::Element: SimdRealField, DefaultAllocator: Allocator<N, D>, { /// Creates a new identity isometry. /// /// # Example /// /// ``` /// # use nalgebra::{Isometry2, Point2, Isometry3, Point3}; /// /// let iso = Isometry2::identity(); /// let pt = Point2::new(1.0, 2.0); /// assert_eq!(iso * pt, pt); /// /// let iso = Isometry3::identity(); /// let pt = Point3::new(1.0, 2.0, 3.0); /// assert_eq!(iso * pt, pt); /// ``` #[inline] pub fn identity() -> Self { Self::from_parts(Translation::identity(), R::identity()) } /// The isometry that applies the rotation `r` with its axis passing through the point `p`. /// This effectively lets `p` invariant. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Isometry2, Point2, UnitComplex}; /// let rot = UnitComplex::new(f32::consts::PI); /// let pt = Point2::new(1.0, 0.0); /// let iso = Isometry2::rotation_wrt_point(rot, pt); /// /// assert_eq!(iso * pt, pt); // The rotation center is not affected. /// assert_relative_eq!(iso * Point2::new(1.0, 2.0), Point2::new(1.0, -2.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn rotation_wrt_point(r: R, p: Point<N, D>) -> Self { let shift = r.transform_vector(&-&p.coords); Self::from_parts(Translation::from(shift + p.coords), r) } } impl<N: SimdRealField, D: DimName, R: AbstractRotation<N, D>> One for Isometry<N, D, R> where N::Element: SimdRealField, DefaultAllocator: Allocator<N, D>, { /// Creates a new identity isometry. #[inline] fn one() -> Self { Self::identity() } } #[cfg(feature = "rand-no-std")] impl<N: crate::RealField, D: DimName, R> Distribution<Isometry<N, D, R>> for Standard where R: AbstractRotation<N, D>, Standard: Distribution<N> + Distribution<R>, DefaultAllocator: Allocator<N, D>, { #[inline] fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> Isometry<N, D, R> { Isometry::from_parts(rng.gen(), rng.gen()) } } #[cfg(feature = "arbitrary")] impl<N, D: DimName, R> Arbitrary for Isometry<N, D, R> where N: SimdRealField + Arbitrary + Send, N::Element: SimdRealField, R: AbstractRotation<N, D> + Arbitrary + Send, Owned<N, D>: Send, DefaultAllocator: Allocator<N, D>, { #[inline] fn arbitrary(rng: &mut Gen) -> Self { Self::from_parts(Arbitrary::arbitrary(rng), Arbitrary::arbitrary(rng)) } } /* * * Constructors for various static dimensions. * */ /// # Construction from a 2D vector and/or a rotation angle impl<N: SimdRealField> IsometryMatrix2<N> where N::Element: SimdRealField, { /// Creates a new 2D isometry from a translation and a rotation angle. /// /// Its rotational part is represented as a 2x2 rotation matrix. /// /// # Example /// /// ``` /// # use std::f32; /// # use nalgebra::{Isometry2, Vector2, Point2}; /// let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); /// /// assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0)); /// ``` #[inline] pub fn new(translation: Vector2<N>, angle: N) -> Self { Self::from_parts( Translation::from(translation), Rotation::<N, U2>::new(angle), ) } /// Creates a new isometry from the given translation coordinates. #[inline] pub fn translation(x: N, y: N) -> Self { Self::new(Vector2::new(x, y), N::zero()) } /// Creates a new isometry from the given rotation angle. #[inline] pub fn rotation(angle: N) -> Self { Self::new(Vector2::zeros(), angle) } /// Cast the components of `self` to another type. /// /// # Example /// ``` /// # use nalgebra::IsometryMatrix2; /// let iso = IsometryMatrix2::<f64>::identity(); /// let iso2 = iso.cast::<f32>(); /// assert_eq!(iso2, IsometryMatrix2::<f32>::identity()); /// ``` pub fn cast<To: Scalar>(self) -> IsometryMatrix2<To> where IsometryMatrix2<To>: SupersetOf<Self>, { crate::convert(self) } } impl<N: SimdRealField> Isometry2<N> where N::Element: SimdRealField, { /// Creates a new 2D isometry from a translation and a rotation angle. /// /// Its rotational part is represented as an unit complex number. /// /// # Example /// /// ``` /// # use std::f32; /// # use nalgebra::{IsometryMatrix2, Point2, Vector2}; /// let iso = IsometryMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); /// /// assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0)); /// ``` #[inline] pub fn new(translation: Vector2<N>, angle: N) -> Self { Self::from_parts( Translation::from(translation), UnitComplex::from_angle(angle), ) } /// Creates a new isometry from the given translation coordinates. #[inline] pub fn translation(x: N, y: N) -> Self { Self::from_parts(Translation2::new(x, y), UnitComplex::identity()) } /// Creates a new isometry from the given rotation angle. #[inline] pub fn rotation(angle: N) -> Self { Self::new(Vector2::zeros(), angle) } /// Cast the components of `self` to another type. /// /// # Example /// ``` /// # use nalgebra::Isometry2; /// let iso = Isometry2::<f64>::identity(); /// let iso2 = iso.cast::<f32>(); /// assert_eq!(iso2, Isometry2::<f32>::identity()); /// ``` pub fn cast<To: Scalar>(self) -> Isometry2<To> where Isometry2<To>: SupersetOf<Self>, { crate::convert(self) } } // 3D rotation. macro_rules! basic_isometry_construction_impl( ($RotId: ident < $($RotParams: ident),*>) => { /// Creates a new isometry from a translation and a rotation axis-angle. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Isometry3, IsometryMatrix3, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// let translation = Vector3::new(1.0, 2.0, 3.0); /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// /// // Isometry with its rotation part represented as a UnitQuaternion /// let iso = Isometry3::new(translation, axisangle); /// assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6); /// assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix). /// let iso = IsometryMatrix3::new(translation, axisangle); /// assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6); /// assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self { Self::from_parts( Translation::from(translation), $RotId::<$($RotParams),*>::from_scaled_axis(axisangle)) } /// Creates a new isometry from the given translation coordinates. #[inline] pub fn translation(x: N, y: N, z: N) -> Self { Self::from_parts(Translation3::new(x, y, z), $RotId::identity()) } /// Creates a new isometry from the given rotation angle. #[inline] pub fn rotation(axisangle: Vector3<N>) -> Self { Self::new(Vector3::zeros(), axisangle) } } ); macro_rules! look_at_isometry_construction_impl( ($RotId: ident < $($RotParams: ident),*>) => { /// Creates an isometry that corresponds to the local frame of an observer standing at the /// point `eye` and looking toward `target`. /// /// It maps the `z` axis to the view direction `target - eye`and the origin to the `eye`. /// /// # Arguments /// * eye - The observer position. /// * target - The target position. /// * up - Vertical direction. The only requirement of this parameter is to not be collinear /// to `eye - at`. Non-collinearity is not checked. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Isometry3, IsometryMatrix3, Point3, Vector3}; /// let eye = Point3::new(1.0, 2.0, 3.0); /// let target = Point3::new(2.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// // Isometry with its rotation part represented as a UnitQuaternion /// let iso = Isometry3::face_towards(&eye, &target, &up); /// assert_eq!(iso * Point3::origin(), eye); /// assert_relative_eq!(iso * Vector3::z(), Vector3::x()); /// /// // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). /// let iso = IsometryMatrix3::face_towards(&eye, &target, &up); /// assert_eq!(iso * Point3::origin(), eye); /// assert_relative_eq!(iso * Vector3::z(), Vector3::x()); /// ``` #[inline] pub fn face_towards(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self { Self::from_parts( Translation::from(eye.coords.clone()), $RotId::face_towards(&(target - eye), up)) } /// Deprecated: Use [Isometry::face_towards] instead. #[deprecated(note="renamed to `face_towards`")] pub fn new_observer_frame(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self { Self::face_towards(eye, target, up) } /// Builds a right-handed look-at view matrix. /// /// It maps the view direction `target - eye` to the **negative** `z` axis to and the `eye` to the origin. /// This conforms to the common notion of right handed camera look-at **view matrix** from /// the computer graphics community, i.e. the camera is assumed to look toward its local `-z` axis. /// /// # Arguments /// * eye - The eye position. /// * target - The target position. /// * up - A vector approximately aligned with required the vertical axis. The only /// requirement of this parameter is to not be collinear to `target - eye`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Isometry3, IsometryMatrix3, Point3, Vector3}; /// let eye = Point3::new(1.0, 2.0, 3.0); /// let target = Point3::new(2.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// // Isometry with its rotation part represented as a UnitQuaternion /// let iso = Isometry3::look_at_rh(&eye, &target, &up); /// assert_eq!(iso * eye, Point3::origin()); /// assert_relative_eq!(iso * Vector3::x(), -Vector3::z()); /// /// // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). /// let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up); /// assert_eq!(iso * eye, Point3::origin()); /// assert_relative_eq!(iso * Vector3::x(), -Vector3::z()); /// ``` #[inline] pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self { let rotation = $RotId::look_at_rh(&(target - eye), up); let trans = &rotation * (-eye); Self::from_parts(Translation::from(trans.coords), rotation) } /// Builds a left-handed look-at view matrix. /// /// It maps the view direction `target - eye` to the **positive** `z` axis and the `eye` to the origin. /// This conforms to the common notion of right handed camera look-at **view matrix** from /// the computer graphics community, i.e. the camera is assumed to look toward its local `z` axis. /// /// # Arguments /// * eye - The eye position. /// * target - The target position. /// * up - A vector approximately aligned with required the vertical axis. The only /// requirement of this parameter is to not be collinear to `target - eye`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Isometry3, IsometryMatrix3, Point3, Vector3}; /// let eye = Point3::new(1.0, 2.0, 3.0); /// let target = Point3::new(2.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// // Isometry with its rotation part represented as a UnitQuaternion /// let iso = Isometry3::look_at_lh(&eye, &target, &up); /// assert_eq!(iso * eye, Point3::origin()); /// assert_relative_eq!(iso * Vector3::x(), Vector3::z()); /// /// // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). /// let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up); /// assert_eq!(iso * eye, Point3::origin()); /// assert_relative_eq!(iso * Vector3::x(), Vector3::z()); /// ``` #[inline] pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self { let rotation = $RotId::look_at_lh(&(target - eye), up); let trans = &rotation * (-eye); Self::from_parts(Translation::from(trans.coords), rotation) } } ); /// # Construction from a 3D vector and/or an axis-angle impl<N: SimdRealField> Isometry3<N> where N::Element: SimdRealField, { basic_isometry_construction_impl!(UnitQuaternion<N>); /// Cast the components of `self` to another type. /// /// # Example /// ``` /// # use nalgebra::Isometry3; /// let iso = Isometry3::<f64>::identity(); /// let iso2 = iso.cast::<f32>(); /// assert_eq!(iso2, Isometry3::<f32>::identity()); /// ``` pub fn cast<To: Scalar>(self) -> Isometry3<To> where Isometry3<To>: SupersetOf<Self>, { crate::convert(self) } } impl<N: SimdRealField> IsometryMatrix3<N> where N::Element: SimdRealField, { basic_isometry_construction_impl!(Rotation3<N>); /// Cast the components of `self` to another type. /// /// # Example /// ``` /// # use nalgebra::IsometryMatrix3; /// let iso = IsometryMatrix3::<f64>::identity(); /// let iso2 = iso.cast::<f32>(); /// assert_eq!(iso2, IsometryMatrix3::<f32>::identity()); /// ``` pub fn cast<To: Scalar>(self) -> IsometryMatrix3<To> where IsometryMatrix3<To>: SupersetOf<Self>, { crate::convert(self) } } /// # Construction from a 3D eye position and target point impl<N: SimdRealField> Isometry3<N> where N::Element: SimdRealField, { look_at_isometry_construction_impl!(UnitQuaternion<N>); } impl<N: SimdRealField> IsometryMatrix3<N> where N::Element: SimdRealField, { look_at_isometry_construction_impl!(Rotation3<N>); }