Type Definition nalgebra::geometry::UnitQuaternion[][src]

pub type UnitQuaternion<N> = Unit<Quaternion<N>>;
Expand description

A unit quaternions. May be used to represent a rotation.

Implementations

The rotation angle in [0; pi] of this unit quaternion.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
assert_eq!(rot.angle(), 1.78);

The underlying quaternion.

Same as self.as_ref().

Example

let axis = UnitQuaternion::identity();
assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0));

Compute the conjugate of this unit quaternion.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
let conj = rot.conjugate();
assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78));

Inverts this quaternion if it is not zero.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
let inv = rot.inverse();
assert_eq!(rot * inv, UnitQuaternion::identity());
assert_eq!(inv * rot, UnitQuaternion::identity());

The rotation angle needed to make self and other coincide.

Example

let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);

The unit quaternion needed to make self and other coincide.

The result is such that: self.rotation_to(other) * self == other.

Example

let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
let rot_to = rot1.rotation_to(&rot2);
assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);

Linear interpolation between two unit quaternions.

The result is not normalized.

Example

let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0));

Normalized linear interpolation between two unit quaternions.

This is the same as self.lerp except that the result is normalized.

Example

let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0)));

Spherical linear interpolation between two unit quaternions.

Panics if the angle between both quaternion is 180 degrees (in which case the interpolation is not well-defined). Use .try_slerp instead to avoid the panic.

Examples:


let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);

let q = q1.slerp(&q2, 1.0 / 3.0);

assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));

Computes the spherical linear interpolation between two unit quaternions or returns None if both quaternions are approximately 180 degrees apart (in which case the interpolation is not well-defined).

Arguments

  • self: the first quaternion to interpolate from.
  • other: the second quaternion to interpolate toward.
  • t: the interpolation parameter. Should be between 0 and 1.
  • epsilon: the value below which the sinus of the angle separating both quaternion must be to return None.

Compute the conjugate of this unit quaternion in-place.

Inverts this quaternion if it is not zero.

Example

let axisangle = Vector3::new(0.1, 0.2, 0.3);
let mut rot = UnitQuaternion::new(axisangle);
rot.inverse_mut();
assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity());
assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity());

The rotation axis of this unit quaternion or None if the rotation is zero.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
assert_eq!(rot.axis(), Some(axis));

// Case with a zero angle.
let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
assert!(rot.axis().is_none());

The rotation axis of this unit quaternion multiplied by the rotation angle.

Example

let axisangle = Vector3::new(0.1, 0.2, 0.3);
let rot = UnitQuaternion::new(axisangle);
assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);

The rotation axis and angle in ]0, pi] of this unit quaternion.

Returns None if the angle is zero.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
assert_eq!(rot.axis_angle(), Some((axis, angle)));

// Case with a zero angle.
let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
assert!(rot.axis_angle().is_none());

Compute the exponential of a quaternion.

Note that this function yields a Quaternion<N> because it loses the unit property.

Compute the natural logarithm of a quaternion.

Note that this function yields a Quaternion<N> because it loses the unit property. The vector part of the return value corresponds to the axis-angle representation (divided by 2.0) of this unit quaternion.

Example

let axisangle = Vector3::new(0.1, 0.2, 0.3);
let q = UnitQuaternion::new(axisangle);
assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6);

Raise the quaternion to a given floating power.

This returns the unit quaternion that identifies a rotation with axis self.axis() and angle self.angle() × n.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
let pow = rot.powf(2.0);
assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
assert_eq!(pow.angle(), 2.4);

Builds a rotation matrix from this unit quaternion.

Example

let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let rot = q.to_rotation_matrix();
let expected = Matrix3::new(0.8660254, -0.5,      0.0,
                            0.5,       0.8660254, 0.0,
                            0.0,       0.0,       1.0);

assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6);
👎 Deprecated:

This is renamed to use .euler_angles().

Converts this unit quaternion into its equivalent Euler angles.

The angles are produced in the form (roll, pitch, yaw).

Retrieves the euler angles corresponding to this unit quaternion.

The angles are produced in the form (roll, pitch, yaw).

Example

let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);

Converts this unit quaternion into its equivalent homogeneous transformation matrix.

Example

let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let expected = Matrix4::new(0.8660254, -0.5,      0.0, 0.0,
                            0.5,       0.8660254, 0.0, 0.0,
                            0.0,       0.0,       1.0, 0.0,
                            0.0,       0.0,       0.0, 1.0);

assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6);

Rotate a point by this unit quaternion.

This is the same as the multiplication self * pt.

Example

let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));

assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);

Rotate a vector by this unit quaternion.

This is the same as the multiplication self * v.

Example

let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));

assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);

Rotate a point by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the point.

Example

let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));

assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);

Rotate a vector by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the vector.

Example

let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));

assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);

Rotate a vector by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the vector.

Example

let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_2);
let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());

assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);

Appends to self a rotation given in the axis-angle form, using a linearized formulation.

This is faster, but approximate, way to compute UnitQuaternion::new(axisangle) * self.

The rotation identity.

Example

let q = UnitQuaternion::identity();
let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0));
let v = Vector3::new_random();
let p = Point3::from(v);

assert_eq!(q * q2, q2);
assert_eq!(q2 * q, q2);
assert_eq!(q * v, v);
assert_eq!(q * p, p);

Cast the components of self to another type.

Example

let q = UnitQuaternion::from_euler_angles(1.0f64, 2.0, 3.0);
let q2 = q.cast::<f32>();
assert_relative_eq!(q2, UnitQuaternion::from_euler_angles(1.0f32, 2.0, 3.0), epsilon = 1.0e-6);

Creates a new quaternion from a unit vector (the rotation axis) and an angle (the rotation angle).

Example

let axis = Vector3::y_axis();
let angle = f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_axis_angle(&axis, angle);

assert_eq!(q.axis().unwrap(), axis);
assert_eq!(q.angle(), angle);
assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());

Creates a new unit quaternion from a quaternion.

The input quaternion will be normalized.

Creates a new unit quaternion from Euler angles.

The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.

Example

let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);

Builds an unit quaternion from a basis assumed to be orthonormal.

In order to get a valid unit-quaternion, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.

Builds an unit quaternion from a rotation matrix.

Example

let axis = Vector3::y_axis();
let angle = 0.1;
let rot = Rotation3::from_axis_angle(&axis, angle);
let q = UnitQuaternion::from_rotation_matrix(&rot);
assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6);
assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6);
assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6);

Builds an unit quaternion by extracting the rotation part of the given transformation m.

This is an iterative method. See .from_matrix_eps to provide mover convergence parameters and starting solution. This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.

Builds an unit quaternion by extracting the rotation part of the given transformation m.

This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.

Parameters

  • m: the matrix from which the rotational part is to be extracted.
  • eps: the angular errors tolerated between the current rotation and the optimal one.
  • max_iter: the maximum number of iterations. Loops indefinitely until convergence if set to 0.
  • guess: an estimate of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set to UnitQuaternion::identity() if no other guesses come to mind.

The unit quaternion needed to make a and b be collinear and point toward the same direction. Returns None if both a and b are collinear and point to opposite directions, as then the rotation desired is not unique.

Example

let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
assert_relative_eq!(q * a, b);
assert_relative_eq!(q.inverse() * b, a);

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

Example

let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);

The unit quaternion needed to make a and b be collinear and point toward the same direction.

Example

let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
assert_relative_eq!(q * a, b);
assert_relative_eq!(q.inverse() * b, a);

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

Example

let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);

Creates an unit quaternion that corresponds to the local frame of an observer standing at the origin and looking toward dir.

It maps the z axis to the direction dir.

Arguments

  • dir - The look direction. It does not need to be normalized.
  • up - The vertical direction. It does not need to be normalized. The only requirement of this parameter is to not be collinear to dir. Non-collinearity is not checked.

Example

let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let q = UnitQuaternion::face_towards(&dir, &up);
assert_relative_eq!(q * Vector3::z(), dir.normalize());
👎 Deprecated:

renamed to face_towards

Deprecated: Use UnitQuaternion::face_towards instead.

Builds a right-handed look-at view matrix without translation.

It maps the view direction dir to the negative z axis. This conforms to the common notion of right handed look-at matrix from the computer graphics community.

Arguments

  • dir − The view direction. It does not need to be normalized.
  • up - A vector approximately aligned with required the vertical axis. It does not need to be normalized. The only requirement of this parameter is to not be collinear to dir.

Example

let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let q = UnitQuaternion::look_at_rh(&dir, &up);
assert_relative_eq!(q * dir.normalize(), -Vector3::z());

Builds a left-handed look-at view matrix without translation.

It maps the view direction dir to the positive z axis. This conforms to the common notion of left handed look-at matrix from the computer graphics community.

Arguments

  • dir − The view direction. It does not need to be normalized.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to dir.

Example

let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let q = UnitQuaternion::look_at_lh(&dir, &up);
assert_relative_eq!(q * dir.normalize(), Vector3::z());

Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.

If axisangle has a magnitude smaller than N::default_epsilon(), this returns the identity rotation.

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::new(axisangle);

assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity());

Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.

If axisangle has a magnitude smaller than eps, this returns the identity rotation.

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::new_eps(axisangle, 1.0e-6);

assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// An almost zero vector yields an identity.
assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());

Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.

If axisangle has a magnitude smaller than N::default_epsilon(), this returns the identity rotation. Same as Self::new(axisangle).

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_scaled_axis(axisangle);

assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());

Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.

If axisangle has a magnitude smaller than eps, this returns the identity rotation. Same as Self::new_eps(axisangle, eps).

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6);

assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// An almost zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());

Create the mean unit quaternion from a data structure implementing IntoIterator returning unit quaternions.

The method will panic if the iterator does not return any quaternions.

Algorithm from: Oshman, Yaakov, and Avishy Carmi. “Attitude estimation from vector observations using a genetic-algorithm-embedded quaternion particle filter.” Journal of Guidance, Control, and Dynamics 29.4 (2006): 879-891.

Example

let q1 = UnitQuaternion::from_euler_angles(0.0, 0.0, 0.0);
let q2 = UnitQuaternion::from_euler_angles(-0.1, 0.0, 0.0);
let q3 = UnitQuaternion::from_euler_angles(0.1, 0.0, 0.0);

let quat_vec = vec![q1, q2, q3];
let q_mean = UnitQuaternion::mean_of(quat_vec);

let euler_angles_mean = q_mean.euler_angles();
assert_relative_eq!(euler_angles_mean.0, 0.0, epsilon = 1.0e-7)

Trait Implementations

Used for specifying relative comparisons.

The default tolerance to use when testing values that are close together. Read more

A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more

The inverse of AbsDiffEq::abs_diff_eq.

The rotation identity.

The rotation inverse.

Change self to its inverse.

Apply the rotation to the given vector.

Apply the rotation to the given point.

Apply the inverse rotation to the given vector.

Apply the inverse rotation to the given point.

Apply the inverse rotation to the given unit vector.

Returns the “default value” for a type. Read more

Formats the value using the given formatter. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

The resulting type after applying the / operator.

Performs the / operation. Read more

Performs the /= operation. Read more

Performs the /= operation. Read more

Performs the /= operation. Read more

Performs the /= operation. Read more

Performs the conversion.

Performs the conversion.

Performs the conversion.

Performs the conversion.

Performs the conversion.

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

The resulting type after applying the * operator.

Performs the * operation. Read more

Performs the *= operation. Read more

Performs the *= operation. Read more

Performs the *= operation. Read more

Performs the *= operation. Read more

Returns the multiplicative identity element of Self, 1. Read more

Sets self to the multiplicative identity element of Self, 1.

Returns true if self is equal to the multiplicative identity. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

The default relative tolerance for testing values that are far-apart. Read more

A test for equality that uses a relative comparison if the values are far apart.

The inverse of RelativeEq::relative_eq.

The type of the elements of each lane of this SIMD value.

Type of the result of comparing two SIMD values like self.

The number of lanes of this SIMD value.

Initializes an SIMD value with each lanes set to val.

Extracts the i-th lane of self. Read more

Extracts the i-th lane of self without bound-checking.

Replaces the i-th lane of self by val. Read more

Replaces the i-th lane of self by val without bound-checking.

Merges self and other depending on the lanes of cond. Read more

Applies a function to each lane of self. Read more

Applies a function to each lane of self paired with the corresponding lane of b. Read more

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

The default ULPs to tolerate when testing values that are far-apart. Read more

A test for equality that uses units in the last place (ULP) if the values are far apart.

The inverse of UlpsEq::ulps_eq.